These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 12831898)

  • 41. Insights to the oxidative desulfurization process of fossil fuels over organic and inorganic heterogeneous catalysts: advantages and issues.
    Haghighi M; Gooneh-Farahani S
    Environ Sci Pollut Res Int; 2020 Nov; 27(32):39923-39945. PubMed ID: 32789628
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Simultaneously saccharification and fermentation approach as a tool for enhanced fossil fuels biodesulfurization.
    Paixão SM; Arez BF; Roseiro JC; Alves L
    J Environ Manage; 2016 Nov; 182():397-405. PubMed ID: 27505164
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biodesulfurization of a system containing synthetic fuel using Rhodococcus erythropolis ATCC 4277.
    Maass D; de Oliveira D; de Souza AA; Souza SM
    Appl Biochem Biotechnol; 2014 Nov; 174(6):2079-85. PubMed ID: 25163887
    [TBL] [Abstract][Full Text] [Related]  

  • 44. From fields to fuels: recent advances in the microbial production of biofuels.
    Kung Y; Runguphan W; Keasling JD
    ACS Synth Biol; 2012 Nov; 1(11):498-513. PubMed ID: 23656227
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of sulfur sources on specific desulfurization activity of Rhodococcus erythropolis KA2-5-1 in exponential fed-batch culture.
    Konishi M; Kishimoto M; Omasa T; Katakura Y; Shioya S; Ohtake H
    J Biosci Bioeng; 2005 Mar; 99(3):259-63. PubMed ID: 16233786
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Deep desulfurization of fossil fuels by air in the absence of a catalyst.
    Xu X; Moulijn JA; Ito E; Wagemans R; Makkee M
    ChemSusChem; 2008; 1(10):817-9. PubMed ID: 18821559
    [No Abstract]   [Full Text] [Related]  

  • 47. Isolation and characterization of an interactive culture of two Paenibacillus species with moderately thermophilic desulfurization ability.
    Wang J; Davaadelger B; Salazar JK; Butler RR; Pombert JF; Kilbane JJ; Stark BC
    Biotechnol Lett; 2015 Nov; 37(11):2201-11. PubMed ID: 26209032
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enhancement of dibenzothiophene desulfurization by Gordonia alkanivorans strain 1B using sugar beet molasses as alternative carbon source.
    Alves L; Paixão SM
    Appl Biochem Biotechnol; 2014 Mar; 172(6):3297-305. PubMed ID: 24519629
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biodesulfurization of DBT in tetradecane and crude oil by a facultative thermophilic bacterium Mycobacterium goodii X7B.
    Li F; Zhang Z; Feng J; Cai X; Xu P
    J Biotechnol; 2007 Jan; 127(2):222-8. PubMed ID: 16905217
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Genetic and functional characterization of multiple thermophilic organosulfur-removal systems reveals desulfurization potentials for waste residue oil cleaning.
    Peng C; Shi Y; Wang S; Zhang J; Wan X; Yin Y; Wang D; Wang W
    J Hazard Mater; 2023 Mar; 446():130706. PubMed ID: 36603426
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Differential desulfurization of dibenzothiophene by newly identified MTCC strains: Influence of Operon Array.
    Bhanjadeo MM; Rath K; Gupta D; Pradhan N; Biswal SK; Mishra BK; Subudhi U
    PLoS One; 2018; 13(3):e0192536. PubMed ID: 29518089
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Wax ester production by bacteria.
    Ishige T; Tani A; Sakai Y; Kato N
    Curr Opin Microbiol; 2003 Jun; 6(3):244-50. PubMed ID: 12831900
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Engineering synthetic bacterial consortia for enhanced desulfurization and revalorization of oil sulfur compounds.
    Martínez I; Mohamed ME; Rozas D; García JL; Díaz E
    Metab Eng; 2016 May; 35():46-54. PubMed ID: 26802977
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characterization of Truncated dsz Operon Responsible for Dibenzothiophene Biodesulfurization in Rhodococcus sp. FUM94.
    Khosravinia S; Mahdavi MA; Gheshlaghi R; Dehghani H
    Appl Biochem Biotechnol; 2018 Mar; 184(3):885-896. PubMed ID: 28918586
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Non-hydrogen processes for simultaneous desulfurization and denitrogenation of light petroleum fuels-an elaborative review.
    Kumari S; Sengupta S
    Environ Sci Pollut Res Int; 2021 Nov; 28(44):61873-61907. PubMed ID: 34553278
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fructophilic behaviour of Gordonia alkanivorans strain 1B during dibenzothiophene desulfurization process.
    Alves L; Paixão SM
    N Biotechnol; 2014 Jan; 31(1):73-9. PubMed ID: 24012483
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Relation between bacterial strain resistance to solvents and biodesulfurization activity in organic medium.
    Bouchez-Naïtali M; Abbad-Andaloussi S; Warzywoda M; Monot F
    Appl Microbiol Biotechnol; 2004 Sep; 65(4):440-5. PubMed ID: 15133641
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Metabolic engineering of hydrophobic Rhodococcus opacus for biodesulfurization in oil-water biphasic reaction mixtures.
    Kawaguchi H; Kobayashi H; Sato K
    J Biosci Bioeng; 2012 Mar; 113(3):360-6. PubMed ID: 22099375
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Gene cloning and characterization of Mycobacterium phlei flavin reductase involved in dibenzothiophene desulfurization.
    Furuya T; Takahashi S; Iwasaki Y; Ishii Y; Kino K; Kirimura K
    J Biosci Bioeng; 2005 Jun; 99(6):577-85. PubMed ID: 16233834
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Construction and evaluation of a genetic engineered strain for biodesulfurization].
    Li H; Yu Z; Xiong X; Li Y; Li X
    Sheng Wu Gong Cheng Xue Bao; 2008 Dec; 24(12):2034-40. PubMed ID: 19306572
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.