These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 128319)

  • 1. Kinetic studies on rat liver and beef heart mitochondrial adenosine triphosphatase: the effects of the chromium complexes of adenosine triposphate and adenosine diphosphate on the kinetic properties.
    Schuster SM; Ebel RE; Lardy HA
    Arch Biochem Biophys; 1975 Dec; 171(2):656-61. PubMed ID: 128319
    [No Abstract]   [Full Text] [Related]  

  • 2. Energy-dependent enhancement of aurovertin fluorescence. An indicator of conformational changes in beef heart mitochondrial adenosine triphosphatase.
    Chang TM; Penefsky HS
    J Biol Chem; 1974 Feb; 249(4):1090-8. PubMed ID: 4273518
    [No Abstract]   [Full Text] [Related]  

  • 3. Exploring sites on mitochondrial ATPase for catalysis, regulation, and inhibition.
    Lardy HA; Schuster SM; Ebel RE
    J Supramol Struct; 1975; 3(3):214-21. PubMed ID: 127084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of adenosine and nagarse on palmitoly-CoA synthese in rat heart and liver mitochondria.
    De Jong JW
    Biochim Biophys Acta; 1971 Sep; 245(2):288-98. PubMed ID: 5160740
    [No Abstract]   [Full Text] [Related]  

  • 5. The stimulation action of K+ on the hydrolytic activity of soluble mitochondrial ATPase.
    Tuena de Gómez Puyou M; Puyou AG
    Biochem Biophys Res Commun; 1976 Mar; 69(1):201-6. PubMed ID: 130906
    [No Abstract]   [Full Text] [Related]  

  • 6. A simple procedure for isolating adenosine triphosphatase from mitochondria.
    Drahota Z; Houstĕk J
    Biochim Biophys Acta; 1977 Jun; 460(3):541-8. PubMed ID: 18170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Essential arginyl residues in mitochondrial adenosine triphosphatase.
    Marcus F; Schuster SM; Lardy HA
    J Biol Chem; 1976 Mar; 251(6):1775-80. PubMed ID: 176162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of aflatoxin B 1 on the swelling and adenosine triphosphatase activities of mitochondria isolated from different tissues of the rat.
    Bababunmi EA; Bassir O
    FEBS Lett; 1972 Oct; 26(1):102-4. PubMed ID: 4264158
    [No Abstract]   [Full Text] [Related]  

  • 9. Arsenate and phosphate as modifiers of adenosine triphosphate driven energy-linked reduction. Kinetic study of the effects of modifiers on inhibition by adenosine diphosphate.
    Huang CH; Mitchell RA
    Biochemistry; 1972 Jun; 11(12):2278-83. PubMed ID: 4337612
    [No Abstract]   [Full Text] [Related]  

  • 10. On the relationships between the stoichiometry of oxidative phosphorylation and the phosphorylation potential of rat liver mitochondria as functions of respiratory state.
    Davis EJ; Lumeng L; Bottoms D
    FEBS Lett; 1974 Feb; 39(1):9-12. PubMed ID: 4277593
    [No Abstract]   [Full Text] [Related]  

  • 11. Kinetic studies of beef heart mitochondrial adenosine triphosphatase: interaction of the inhibitor protein and adenosine triphosphate analogues.
    Krull KW; Schuster SM
    Biochemistry; 1981 Mar; 20(6):1592-8. PubMed ID: 6452898
    [No Abstract]   [Full Text] [Related]  

  • 12. Control of succinate dehydrogenase in mitochondria.
    Gutman M; Kearney EB; Singer TP
    Biochemistry; 1971 Dec; 10(25):4763-70. PubMed ID: 5140191
    [No Abstract]   [Full Text] [Related]  

  • 13. Kinetic studies on rat liver and beef heart mitochondrial ATPase. Evidence for nucleotide binding at separate regulatory and catalytic sites.
    Schuster SM; Ebel RE; Lardy HA
    J Biol Chem; 1975 Oct; 250(19):7848-53. PubMed ID: 126241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple control mechanisms for succinate dehydrogenase in mitochondria.
    Gutman M; Kearney EB; Singer TP
    Biochem Biophys Res Commun; 1971 Aug; 44(3):526-32. PubMed ID: 5123196
    [No Abstract]   [Full Text] [Related]  

  • 15. Masking of co-operativity of nucleotide sites in pig heart mitochondrial ATPase (F1) by heating.
    Godinot C; Di Pietro A; Gautheron DC
    FEBS Lett; 1975 Dec; 60(2):250-5. PubMed ID: 132370
    [No Abstract]   [Full Text] [Related]  

  • 16. Tight binding of adenine nucleotides to beef-heart mitochondrial ATPase.
    Harris DA; Rosing J; van de Stadt RJ; Slater EC
    Biochim Biophys Acta; 1973 Aug; 314(2):149-53. PubMed ID: 4270535
    [No Abstract]   [Full Text] [Related]  

  • 17. Nucleotide effects on kinetic properties of mitochondrial ATPase.
    Campo ML; Cerdán E; López-Moratalla N; Santiago E
    Rev Esp Fisiol; 1987 Jun; 43(2):141-50. PubMed ID: 2958911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of beef heart mitochondrial adenosine triphosphatase by 2,4-dinitrophenol.
    Cantley LC; Hammes GG
    Biochemistry; 1973 Nov; 12(24):4900-4. PubMed ID: 4271561
    [No Abstract]   [Full Text] [Related]  

  • 19. The interaction between the mitochondrial ATPase (F 1 ) and the ATPase inhibitor.
    van de Stadt RJ; de Boer BL; van Dam K
    Biochim Biophys Acta; 1973 Feb; 292(2):338-49. PubMed ID: 4349916
    [No Abstract]   [Full Text] [Related]  

  • 20. Multiple sites of interaction between the ATPase inhibitor and mitochondrial membrane from rat liver mitochondria.
    Chan SH; Barbour RL
    Biochem Biophys Res Commun; 1976 Sep; 72(2):499-506. PubMed ID: 136254
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.