These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 12832147)
1. Optimization of biochemical systems by linear programming and general mass action model representations. Marín-Sanguino A; Torres NV Math Biosci; 2003 Aug; 184(2):187-200. PubMed ID: 12832147 [TBL] [Abstract][Full Text] [Related]
2. Optimization of biotechnological systems through geometric programming. Marin-Sanguino A; Voit EO; Gonzalez-Alcon C; Torres NV Theor Biol Med Model; 2007 Sep; 4():38. PubMed ID: 17897440 [TBL] [Abstract][Full Text] [Related]
3. Chemical reaction network approaches to Biochemical Systems Theory. Arceo CP; Jose EC; Marin-Sanguino A; Mendoza ER Math Biosci; 2015 Nov; 269():135-52. PubMed ID: 26363083 [TBL] [Abstract][Full Text] [Related]
4. Strategies for representing metabolic pathways within biochemical systems theory: reversible pathways. Sorribas A; Savageau MA Math Biosci; 1989 Jun; 94(2):239-69. PubMed ID: 2520170 [TBL] [Abstract][Full Text] [Related]
5. Steady-state global optimization of metabolic non-linear dynamic models through recasting into power-law canonical models. Pozo C; Marín-Sanguino A; Alves R; Guillén-Gosálbez G; Jiménez L; Sorribas A BMC Syst Biol; 2011 Aug; 5():137. PubMed ID: 21867520 [TBL] [Abstract][Full Text] [Related]
6. Controllability of non-linear biochemical systems. Ervadi-Radhakrishnan A; Voit EO Math Biosci; 2005 Jul; 196(1):99-123. PubMed ID: 15982674 [TBL] [Abstract][Full Text] [Related]
7. Network Translation and Steady-State Properties of Chemical Reaction Systems. Tonello E; Johnston MD Bull Math Biol; 2018 Sep; 80(9):2306-2337. PubMed ID: 30088181 [TBL] [Abstract][Full Text] [Related]
8. Multicriteria optimization of biochemical systems by linear programming: application to production of ethanol by Saccharomyces cerevisiae. Vera J; de Atauri P; Cascante M; Torres NV Biotechnol Bioeng; 2003 Aug; 83(3):335-43. PubMed ID: 12783489 [TBL] [Abstract][Full Text] [Related]
9. A comparison of variant theories of intact biochemical systems. II. Flux-oriented and metabolic control theories. Sorribas A; Savageau MA Math Biosci; 1989 Jun; 94(2):195-238. PubMed ID: 2520169 [TBL] [Abstract][Full Text] [Related]
10. An efficient method for calculation of dynamic logarithmic gains in biochemical systems theory. Shiraishi F; Hatoh Y; Irie T J Theor Biol; 2005 May; 234(1):79-85. PubMed ID: 15721037 [TBL] [Abstract][Full Text] [Related]
11. Reaction networks and kinetics of biochemical systems. Arceo CPP; Jose EC; Lao AR; Mendoza ER Math Biosci; 2017 Jan; 283():13-29. PubMed ID: 27818257 [TBL] [Abstract][Full Text] [Related]
12. Flux duality in nonlinear GMA systems: implications for metabolic engineering. Marin-Sanguino A; Mendoza ER; Voit EO J Biotechnol; 2010 Sep; 149(3):166-72. PubMed ID: 20015458 [TBL] [Abstract][Full Text] [Related]
13. Sensitivity constraints in a chemical/biochemical highly responsive system. Acerenza L Biosystems; 1996; 39(2):109-16. PubMed ID: 8866047 [TBL] [Abstract][Full Text] [Related]
14. A Computational Approach to Steady State Correspondence of Regular and Generalized Mass Action Systems. Johnston MD Bull Math Biol; 2015 Jun; 77(6):1065-100. PubMed ID: 25895700 [TBL] [Abstract][Full Text] [Related]
15. Computation and analysis of time-dependent sensitivities in Generalized Mass Action systems. Schwacke JH; Voit EO J Theor Biol; 2005 Sep; 236(1):21-38. PubMed ID: 15967181 [TBL] [Abstract][Full Text] [Related]
16. Stoichiometric modelling of microbial metabolism. Kuepfer L Methods Mol Biol; 2014; 1191():3-18. PubMed ID: 25178781 [TBL] [Abstract][Full Text] [Related]
17. Estimating parameters for generalized mass action models using constraint propagation. Tucker W; Kutalik Z; Moulton V Math Biosci; 2007 Aug; 208(2):607-20. PubMed ID: 17306307 [TBL] [Abstract][Full Text] [Related]
18. Computational Approaches on Stoichiometric and Kinetic Modeling for Efficient Strain Design. Islam MM; Saha R Methods Mol Biol; 2018; 1671():63-82. PubMed ID: 29170953 [TBL] [Abstract][Full Text] [Related]
19. Yield optimization of regulated metabolic systems using deterministic branch-and-reduce methods. Polisetty PK; Gatzke EP; Voit EO Biotechnol Bioeng; 2008 Apr; 99(5):1154-69. PubMed ID: 18064703 [TBL] [Abstract][Full Text] [Related]
20. A comparison of variant theories of intact biochemical systems. I. Enzyme-enzyme interactions and biochemical systems theory. Sorribas A; Savageau MA Math Biosci; 1989 Jun; 94(2):161-93. PubMed ID: 2520168 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]