These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
338 related articles for article (PubMed ID: 12832509)
1. Distinguishing between presynaptic and postsynaptic mechanisms of short-term depression during action potential trains. Wong AY; Graham BP; Billups B; Forsythe ID J Neurosci; 2003 Jun; 23(12):4868-77. PubMed ID: 12832509 [TBL] [Abstract][Full Text] [Related]
2. Minimizing synaptic depression by control of release probability. Brenowitz S; Trussell LO J Neurosci; 2001 Mar; 21(6):1857-67. PubMed ID: 11245670 [TBL] [Abstract][Full Text] [Related]
3. Synaptic depression improves coincidence detection in the nucleus laminaris in brainstem slices of the chick embryo. Kuba H; Koyano K; Ohmori H Eur J Neurosci; 2002 Mar; 15(6):984-90. PubMed ID: 11918658 [TBL] [Abstract][Full Text] [Related]
4. Vesicular glutamate filling and AMPA receptor occupancy at the calyx of Held synapse of immature rats. Yamashita T; Kanda T; Eguchi K; Takahashi T J Physiol; 2009 May; 587(Pt 10):2327-39. PubMed ID: 19332485 [TBL] [Abstract][Full Text] [Related]
5. Separation of presynaptic and postsynaptic contributions to depression by covariance analysis of successive EPSCs at the calyx of Held synapse. Scheuss V; Schneggenburger R; Neher E J Neurosci; 2002 Feb; 22(3):728-39. PubMed ID: 11826102 [TBL] [Abstract][Full Text] [Related]
6. Presynaptic Ca2+ requirements and developmental regulation of posttetanic potentiation at the calyx of Held. Korogod N; Lou X; Schneggenburger R J Neurosci; 2005 May; 25(21):5127-37. PubMed ID: 15917453 [TBL] [Abstract][Full Text] [Related]
7. Combining deconvolution and noise analysis for the estimation of transmitter release rates at the calyx of held. Neher E; Sakaba T J Neurosci; 2001 Jan; 21(2):444-61. PubMed ID: 11160425 [TBL] [Abstract][Full Text] [Related]
8. A novel presynaptic inhibitory mechanism underlies paired pulse depression at a fast central synapse. Bellingham MC; Walmsley B Neuron; 1999 May; 23(1):159-70. PubMed ID: 10402202 [TBL] [Abstract][Full Text] [Related]
9. Quantitative relationship between transmitter release and calcium current at the calyx of held synapse. Sakaba T; Neher E J Neurosci; 2001 Jan; 21(2):462-76. PubMed ID: 11160426 [TBL] [Abstract][Full Text] [Related]
10. Prolonged physiological entrapment of glutamate in the synaptic cleft of cerebellar unipolar brush cells. Kinney GA; Overstreet LS; Slater NT J Neurophysiol; 1997 Sep; 78(3):1320-33. PubMed ID: 9310423 [TBL] [Abstract][Full Text] [Related]
11. Short-term synaptic plasticity during development of rat mossy fibre to granule cell synapses. Wall MJ Eur J Neurosci; 2005 Apr; 21(8):2149-58. PubMed ID: 15869511 [TBL] [Abstract][Full Text] [Related]
12. Ca2+-permeable AMPA receptors mediate induction of test pulse depression of naive synapses in rat visual cortical slices at early postnatal stage. Meng K; Li YH; Zhang L; Li P; Han TZ Neuroscience; 2010 Feb; 165(3):684-91. PubMed ID: 19925855 [TBL] [Abstract][Full Text] [Related]
13. The dynamic range for gain control of NMDA receptor-mediated synaptic transmission at a single synapse. Wang LY J Neurosci; 2000 Dec; 20(24):RC115. PubMed ID: 11125014 [TBL] [Abstract][Full Text] [Related]
14. Presynaptic mitochondrial calcium sequestration influences transmission at mammalian central synapses. Billups B; Forsythe ID J Neurosci; 2002 Jul; 22(14):5840-7. PubMed ID: 12122046 [TBL] [Abstract][Full Text] [Related]
15. Glutamate transport blockade has a differential effect on AMPA and NMDA receptor-mediated synaptic transmission in the developing barrel cortex. Kidd FL; Isaac JT Neuropharmacology; 2000 Mar; 39(5):725-32. PubMed ID: 10699439 [TBL] [Abstract][Full Text] [Related]
16. Role of GluA3 AMPA Receptor Subunits in the Presynaptic and Postsynaptic Maturation of Synaptic Transmission and Plasticity of Endbulb-Bushy Cell Synapses in the Cochlear Nucleus. Antunes FM; Rubio ME; Kandler K J Neurosci; 2020 Mar; 40(12):2471-2484. PubMed ID: 32051325 [TBL] [Abstract][Full Text] [Related]
17. Developmental increase in vesicular glutamate content does not cause saturation of AMPA receptors at the calyx of Held synapse. Yamashita T; Ishikawa T; Takahashi T J Neurosci; 2003 May; 23(9):3633-8. PubMed ID: 12736334 [TBL] [Abstract][Full Text] [Related]
18. GABA(B) receptor-mediated presynaptic inhibition has history-dependent effects on synaptic transmission during physiologically relevant spike trains. Ohliger-Frerking P; Wiebe SP; Stäubli U; Frerking M J Neurosci; 2003 Jun; 23(12):4809-14. PubMed ID: 12832501 [TBL] [Abstract][Full Text] [Related]
19. Maturation of synaptic transmission at end-bulb synapses of the cochlear nucleus. Brenowitz S; Trussell LO J Neurosci; 2001 Dec; 21(23):9487-98. PubMed ID: 11717383 [TBL] [Abstract][Full Text] [Related]
20. Mechanisms underlying developmental speeding in AMPA-EPSC decay time at the calyx of Held. Koike-Tani M; Saitoh N; Takahashi T J Neurosci; 2005 Jan; 25(1):199-207. PubMed ID: 15634782 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]