BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

454 related articles for article (PubMed ID: 12832648)

  • 1. Increased rates of sequence evolution in endosymbiotic bacteria and fungi with small effective population sizes.
    Woolfit M; Bromham L
    Mol Biol Evol; 2003 Sep; 20(9):1545-55. PubMed ID: 12832648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonhomogeneous model of sequence evolution indicates independent origins of primary endosymbionts within the enterobacteriales (gamma-Proteobacteria).
    Herbeck JT; Degnan PH; Wernegreen JJ
    Mol Biol Evol; 2005 Mar; 22(3):520-32. PubMed ID: 15525700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The roles of positive and negative selection in the molecular evolution of insect endosymbionts.
    Fry AJ; Wernegreen JJ
    Gene; 2005 Aug; 355():1-10. PubMed ID: 16039807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A phylogenomic study of endosymbiotic bacteria.
    Canbäck B; Tamas I; Andersson SG
    Mol Biol Evol; 2004 Jun; 21(6):1110-22. PubMed ID: 15014155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endosymbiosis in statu nascendi: close phylogenetic relationship between obligately endosymbiotic and obligately free-living Polynucleobacter strains (Betaproteobacteria).
    Vannini C; Pöckl M; Petroni G; Wu QL; Lang E; Stackebrandt E; Schrallhammer M; Richardson PM; Hahn MW
    Environ Microbiol; 2007 Feb; 9(2):347-59. PubMed ID: 17222133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular evolution in bacterial endosymbionts of fungi.
    Castillo DM; Pawlowska TE
    Mol Biol Evol; 2010 Mar; 27(3):622-36. PubMed ID: 19923192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deleterious mutations destabilize ribosomal RNA in endosymbiotic bacteria.
    Lambert JD; Moran NA
    Proc Natl Acad Sci U S A; 1998 Apr; 95(8):4458-62. PubMed ID: 9539759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive evolution in GroEL from distantly related endosymbiotic bacteria of insects.
    Fares MA; Moya A; Barrio E
    J Evol Biol; 2005 May; 18(3):651-60. PubMed ID: 15842494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular systematics of aphids and their primary endosymbionts.
    Martinez-Torres D; Buades C; Latorre A; Moya A
    Mol Phylogenet Evol; 2001 Sep; 20(3):437-49. PubMed ID: 11527469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Can the tight co-speciation between reed beetles (Col., Chrysomelidae, Donaciinae) and their bacterial endosymbionts, which provide cocoon material, clarify the deeper phylogeny of the hosts?
    Kölsch G; Pedersen BV
    Mol Phylogenet Evol; 2010 Mar; 54(3):810-21. PubMed ID: 19900566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative molecular evolution of primary (Buchnera) and secondary symbionts of aphids based on two protein-coding genes.
    Moya A; Latorre A; Sabater-Muñoz B; Silva FJ
    J Mol Evol; 2002 Aug; 55(2):127-37. PubMed ID: 12107590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Population structure, levels of selection, and the evolution of intracellular symbionts.
    O'Fallon B
    Evolution; 2008 Feb; 62(2):361-73. PubMed ID: 18070083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome reduction of the aphid endosymbiont Buchnera aphidicola in a recent evolutionary time scale.
    Gómez-Valero L; Silva FJ; Christophe Simon J; Latorre A
    Gene; 2007 Mar; 389(1):87-95. PubMed ID: 17098378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sociality and the rate of molecular evolution.
    Bromham L; Leys R
    Mol Biol Evol; 2005 Jun; 22(6):1393-402. PubMed ID: 15758201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene expression levels influence amino acid usage and evolutionary rates in endosymbiotic bacteria.
    Schaber J; Rispe C; Wernegreen J; Buness A; Delmotte F; Silva FJ; Moya A
    Gene; 2005 Jun; 352():109-17. PubMed ID: 15935576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome evolution in bacterial endosymbionts of insects.
    Wernegreen JJ
    Nat Rev Genet; 2002 Nov; 3(11):850-61. PubMed ID: 12415315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endosymbiont phylogenesis in the dryophthoridae weevils: evidence for bacterial replacement.
    Lefèvre C; Charles H; Vallier A; Delobel B; Farrell B; Heddi A
    Mol Biol Evol; 2004 Jun; 21(6):965-73. PubMed ID: 14739242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction of bacterial genome size and expansion resulting from obligate intracellular lifestyle and adaptation to soil habitat.
    Stepkowski T; Legocki AB
    Acta Biochim Pol; 2001; 48(2):367-81. PubMed ID: 11732608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phylogenetic characterization and molecular evolution of bacterial endosymbionts in psyllids (Hemiptera: Sternorrhyncha).
    Spaulding AW; von Dohlen CD
    Mol Biol Evol; 1998 Nov; 15(11):1506-13. PubMed ID: 12572614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for homologous recombination in intracellular chemosynthetic clam symbionts.
    Stewart FJ; Young CR; Cavanaugh CM
    Mol Biol Evol; 2009 Jun; 26(6):1391-404. PubMed ID: 19289597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.