BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 12833093)

  • 1. Bone marrow stem cells find a path to the pancreas.
    Lechner A; Habener JF
    Nat Biotechnol; 2003 Jul; 21(7):755-6. PubMed ID: 12833093
    [No Abstract]   [Full Text] [Related]  

  • 2. Bone marrow-derived stem cells initiate pancreatic regeneration.
    Hess D; Li L; Martin M; Sakano S; Hill D; Strutt B; Thyssen S; Gray DA; Bhatia M
    Nat Biotechnol; 2003 Jul; 21(7):763-70. PubMed ID: 12819790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversal of new-onset type 1 diabetes in mice by syngeneic bone marrow transplantation.
    Wen Y; Ouyang J; Yang R; Chen J; Liu Y; Zhou X; Burt RK
    Biochem Biophys Res Commun; 2008 Sep; 374(2):282-7. PubMed ID: 18625200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of beta-cell regeneration by islet transplantation after partial pancreatectomy in mice.
    Jung HS; Ahn YR; Oh SH; Kim YS; No H; Lee MK; Kim KW
    Transplantation; 2009 Aug; 88(3):354-9. PubMed ID: 19667937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intra-bone marrow transplantation facilitates pauci-clonal human hematopoietic repopulation of NOD/SCID/beta2m(-/-) mice.
    Levac K; Menendez P; Bhatia M
    Exp Hematol; 2005 Nov; 33(11):1417-26. PubMed ID: 16263425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversal of experimental diabetes by multiple bone marrow transplantation.
    Banerjee M; Kumar A; Bhonde RR
    Biochem Biophys Res Commun; 2005 Mar; 328(1):318-25. PubMed ID: 15670786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transplantation of bone marrow derived cells promotes pancreatic islet repair in diabetic mice.
    Gao X; Song L; Shen K; Wang H; Niu W; Qin X
    Biochem Biophys Res Commun; 2008 Jun; 371(1):132-7. PubMed ID: 18420028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone marrow transplantation stimulates pancreatic β-cell replication after tissue damage.
    Rosengren AH; Taneera J; Rymo S; Renström E
    Islets; 2009; 1(1):10-8. PubMed ID: 21084844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversal of diabetes in hyperglycaemic nude mice by human fetal pancreas.
    Tuch BE; Osgerby KJ; Turtle JR
    Transplant Proc; 1989 Feb; 21(1 Pt 3):2665-6. PubMed ID: 2650349
    [No Abstract]   [Full Text] [Related]  

  • 10. A new bone marrow transplantation method for stem cell disorders.
    Ikehara S
    Ann N Y Acad Sci; 2009 Sep; 1173():774-80. PubMed ID: 19758228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hematopoietic stem cell transplantation prevents diabetes in NOD mice but does not contribute to significant islet cell regeneration once disease is established.
    Kang EM; Zickler PP; Burns S; Langemeijer SM; Brenner S; Phang OA; Patterson N; Harlan D; Tisdale JF
    Exp Hematol; 2005 Jun; 33(6):699-705. PubMed ID: 15911094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of pancreatic duct epithelium from bone marrow during neonatal development.
    Wang X; Ge S; Gonzalez I; McNamara G; Rountree CB; Xi KK; Huang G; Bhushan A; Crooks GM
    Stem Cells; 2006 Feb; 24(2):307-14. PubMed ID: 16510429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone marrow is a preferential homing site for autoreactive T-cells in type 1 diabetes.
    Li R; Perez N; Karumuthil-Melethil S; Vasu C
    Diabetes; 2007 Sep; 56(9):2251-9. PubMed ID: 17596402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mesenchymal stroma cells improve hyperglycemia and insulin deficiency in the diabetic porcine pancreatic microenvironment.
    Chang C; Niu D; Zhou H; Zhang Y; Li F; Gong F
    Cytotherapy; 2008; 10(8):796-805. PubMed ID: 18979304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Haematopoietic stem cells and repair of the ischaemic heart.
    Balsam LB; Robbins RC
    Clin Sci (Lond); 2005 Dec; 109(6):483-92. PubMed ID: 16287425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intra-bone marrow injection of bone marrow and cord blood cells: an alternative way of transplantation associated with a higher seeding efficiency.
    Castello S; Podestà M; Menditto VG; Ibatici A; Pitto A; Figari O; Scarpati D; Magrassi L; Bacigalupo A; Piaggio G; Frassoni F
    Exp Hematol; 2004 Aug; 32(8):782-7. PubMed ID: 15308330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Upregulating CD4+CD25+FOXP3+ regulatory T cells in pancreatic lymph nodes in diabetic NOD mice by adjuvant immunotherapy.
    Tian B; Hao J; Zhang Y; Tian L; Yi H; O'Brien TD; Sutherland DE; Hering BJ; Guo Z
    Transplantation; 2009 Jan; 87(2):198-206. PubMed ID: 19155973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Competitive repopulation assay of two gene-marked cord blood units in NOD/SCID/gammac(null) mice.
    Yahata T; Ando K; Miyatake H; Uno T; Sato T; Ito M; Kato S; Hotta T
    Mol Ther; 2004 Nov; 10(5):882-91. PubMed ID: 15509506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intra-bone marrow cotransplantation of donor mesenchymal stem cells in pig-to-NOD/SCID mouse bone marrow transplantation facilitates short-term xenogeneic hematopoietic engraftment.
    Eguchi H; Kuroiwa Y; Matsui A; Sada M; Nagaya N; Kawano S
    Transplant Proc; 2008 Mar; 40(2):574-7. PubMed ID: 18374132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intra-bone marrow-bone marrow transplantation: a new strategy for treatment of stem cell disorders.
    Ikehara S
    Ann N Y Acad Sci; 2005 Jun; 1051():626-34. PubMed ID: 16127003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.