BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 12833181)

  • 1. The 35 kDa acid metallophosphatase of the frog Rana esculenta liver: studies on its cellular localization and protein phosphatase activity.
    Szalewicz A; Strzelczyk B; Sopel M; Kubicz A
    Acta Biochim Pol; 2003; 50(2):555-66. PubMed ID: 12833181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 18 kDa protein tyrosine phosphatase in the ocular lens.
    Umeda IO; Kashiwa Y; Nishigori H
    Exp Eye Res; 2001 Jul; 73(1):123-32. PubMed ID: 11428869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acid phosphatase from liver of the frog Rana esculenta, separation and partial characterization of multiple forms.
    Kubicz A; Dratewka E; Malicka-Błaszkiewicz M
    Acta Biochim Pol; 1978; 25(4):349-59. PubMed ID: 35912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The high molecular weight and the low molecular weight acid phosphatases of the frog liver and their phosphotyrosine activity.
    Jańska H; Kubicz A; Szalewicz A; Haraźna J
    Comp Biochem Physiol B; 1988; 90(1):173-8. PubMed ID: 2456178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of protein phosphatase 2C and confirmation of other protein phosphatases in the ocular lenses.
    Umeda IO; Nakata H; Nishigori H
    Exp Eye Res; 2004 Dec; 79(6):385-92. PubMed ID: 15669140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional characterization of the low-molecular-mass phosphotyrosine-protein phosphatase of Acinetobacter johnsonii.
    Grangeasse C; Doublet P; Vincent C; Vaganay E; Riberty M; Duclos B; Cozzone AJ
    J Mol Biol; 1998 May; 278(2):339-47. PubMed ID: 9571056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of PP2A, but not PP5, mediates p53 activation by low levels of okadaic acid in rat liver epithelial cells.
    Messner DJ; Romeo C; Boynton A; Rossie S
    J Cell Biochem; 2006 Sep; 99(1):241-55. PubMed ID: 16598789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulatory effect of divalent metal cations on the phosphotyrosine activity of the frog liver acid phosphatase.
    Szalewicz A; Strzelczyk B; Kubicz A
    Acta Biochim Pol; 1999; 46(1):217-21. PubMed ID: 10453998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Tyr/Ser protein phosphatase encoded by vaccinia virus.
    Guan KL; Broyles SS; Dixon JE
    Nature; 1991 Mar; 350(6316):359-62. PubMed ID: 1848923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Domains necessary for Galpha12 binding and stimulation of protein phosphatase-2A (PP2A): Is Galpha12 a novel regulatory subunit of PP2A?
    Zhu D; Tate RI; Ruediger R; Meigs TE; Denker BM
    Mol Pharmacol; 2007 May; 71(5):1268-76. PubMed ID: 17303700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Negative regulation of a protein tyrosine phosphatase by tyrosine phosphorylation.
    Schwarzer D; Zhang Z; Zheng W; Cole PA
    J Am Chem Soc; 2006 Apr; 128(13):4192-3. PubMed ID: 16568970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphotyrosine phosphatase activity in human placenta.
    Sako F; Taniguchi N; Makita A
    Jpn J Exp Med; 1985 Feb; 55(1):21-7. PubMed ID: 2993712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphoprotein phosphatase activity of human prostate acid phosphatase.
    Wasylewska E; Czubak J; Ostrowski WS
    Acta Biochim Pol; 1983; 30(2):175-84. PubMed ID: 6306966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The lower molecular weight acid phosphatase from the frog liver: isolation of homogeneous AcPase III and IV representing glycoforms with different bioactivity.
    Jańska H; Kubicz A; Szalewicz A
    Comp Biochem Physiol B; 1989; 92(2):341-6. PubMed ID: 2784366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amino acid composition and immunochemical properties of AcPase III and AcPase IV representing glycoforms of the lower molecular weight, tartrate-resistant acid phosphatase of the frog liver.
    Szalewicz A; Jańska H; Strzelczyk B; Kubicz A
    Int J Biochem; 1992 Jun; 24(6):975-9. PubMed ID: 1612187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification and partial characterization of two acid phosphatase forms from pearl oyster (Pinctada fucata).
    Jing G; Li L; Li Y; Xie L; Zhang R
    Comp Biochem Physiol B Biochem Mol Biol; 2006 Feb; 143(2):229-35. PubMed ID: 16380281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. VHR and PTP1 protein phosphatases exhibit remarkably different active site specificities toward low molecular weight nonpeptidic substrates.
    Chen L; Montserat J; Lawrence DS; Zhang ZY
    Biochemistry; 1996 Jul; 35(29):9349-54. PubMed ID: 8755712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein phosphatase 1 catalytic subunit isoforms from alfalfa: biochemical characterization and cDNA cloning.
    Vissi E; Tóth EC; Kovács I; Magyar Z; Horváth GV; Bagossi P; Gergely P; Dudits D; Dombrádi V
    Arch Biochem Biophys; 1998 Dec; 360(2):206-14. PubMed ID: 9851832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FYVE-DSP1, a dual-specificity protein phosphatase containing an FYVE domain.
    Zhao R; Qi Y; Zhao ZJ
    Biochem Biophys Res Commun; 2000 Apr; 270(1):222-9. PubMed ID: 10733931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel protein phosphatase 2A (PP2A) is involved in the transformation of human protozoan parasite Trypanosoma cruzi.
    González J; Cornejo A; Santos MR; Cordero EM; Gutiérrez B; Porcile P; Mortara RA; Sagua H; Da Silveira JF; Araya JE
    Biochem J; 2003 Sep; 374(Pt 3):647-56. PubMed ID: 12737627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.