These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 12833370)

  • 1. Regional variations in the outer retina of atherinomorpha (Beloniformes, Atheriniformes, Cyprinodontiformes: Teleostei): photoreceptors, cone patterns, and cone densities.
    Reckel F; Melzer RR
    J Morphol; 2003 Sep; 257(3):270-88. PubMed ID: 12833370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The retina of five atherinomorph teleosts: photoreceptors, patterns and spectral sensitivities.
    Reckel F; Melzer RR; Parry JW; Bowmaker JK
    Brain Behav Evol; 2002; 60(5):249-64. PubMed ID: 12476052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diversity of mammalian photoreceptor properties: adaptations to habitat and lifestyle?
    Peichl L
    Anat Rec A Discov Mol Cell Evol Biol; 2005 Nov; 287(1):1001-12. PubMed ID: 16200646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Triple cones in the retinae of three anchovy species: Engraulis encrasicolus, Cetengraulis mysticetus and Anchovia macrolepidota (Engraulididae, Teleostei).
    Hess M
    Vision Res; 2009 Jun; 49(12):1569-82. PubMed ID: 19328822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptations to an extreme environment: retinal organisation and spectral properties of photoreceptors in Antarctic notothenioid fish.
    Pointer MA; Cheng CH; Bowmaker JK; Parry JW; Soto N; Jeffery G; Cowing JA; Hunt DM
    J Exp Biol; 2005 Jun; 208(Pt 12):2363-76. PubMed ID: 15939776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The structure of anchovy outer retinae (Engraulididae, Clupeiformes) - a comparative light- and electron-microscopic study using museum-stored material.
    Hess M; Melzer RR; Eser R; Smola U
    J Morphol; 2006 Nov; 267(11):1356-80. PubMed ID: 17051549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of opsin expression and apoptosis in determination of cone types in human retina.
    Cornish EE; Xiao M; Yang Z; Provis JM; Hendrickson AE
    Exp Eye Res; 2004 Jun; 78(6):1143-54. PubMed ID: 15109921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modifications of the falciform process in the eye of beloniformes (Teleostei: Atherinomorpha): evolution of a curtain-like septum in the eye.
    Reckel F; Melzer RR
    J Morphol; 2004 Apr; 260(1):13-20. PubMed ID: 15052593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphogenesis of the different types of photoreceptors of the chicken (Gallus domesticus) retina and the effect of amblyopia in neonatal chicken.
    Wai MS; Lorke DE; Kung LS; Yew DT
    Microsc Res Tech; 2006 Feb; 69(2):99-107. PubMed ID: 16456833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative visual function in elasmobranchs: spatial arrangement and ecological correlates of photoreceptor and ganglion cell distributions.
    Litherland L; Collin SP
    Vis Neurosci; 2008; 25(4):549-61. PubMed ID: 18606042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution of cone photoreceptors in the mammalian retina.
    Szél A; Röhlich P; Caffé AR; van Veen T
    Microsc Res Tech; 1996 Dec; 35(6):445-62. PubMed ID: 9016448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromatic organization of cone photoreceptors in the retina of rainbow trout: single cones irreversibly switch from UV (SWS1) to blue (SWS2) light sensitive opsin during natural development.
    Cheng CL; Flamarique IN
    J Exp Biol; 2007 Dec; 210(Pt 23):4123-35. PubMed ID: 18025012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional analysis of mouse rod and cone mitochondrial cristae architecture: bioenergetic and functional implications.
    Perkins GA; Ellisman MH; Fox DA
    Mol Vis; 2003 Mar; 9():60-73. PubMed ID: 12632036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The spatial arrangement of cones in the primate fovea.
    Mollon JD; Bowmaker JK
    Nature; 1992 Dec; 360(6405):677-9. PubMed ID: 1465131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cone photoreceptor topography in the retina of sexually mature Pacific salmonid fishes.
    Beaudet L; Novales Flamarique I; Hawryshyn CW
    J Comp Neurol; 1997 Jun; 383(1):49-59. PubMed ID: 9184985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cone photoreceptor diversity in the retinas of fruit bats (megachiroptera).
    Müller B; Goodman SM; Peichl L
    Brain Behav Evol; 2007; 70(2):90-104. PubMed ID: 17522478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Connexin 36 in photoreceptor cells: studies on transgenic rod-less and cone-less mouse retinas.
    Dang L; Pulukuri S; Mears AJ; Swaroop A; Reese BE; Sitaramayya A
    Mol Vis; 2004 May; 10():323-7. PubMed ID: 15152186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoreceptor topography in the duplex retina of the paddlefish (Polyodon spathula).
    Sillman AJ; Dahlin DA
    J Exp Zool A Comp Exp Biol; 2004 Aug; 301(8):674-81. PubMed ID: 15286947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The topography of cone photoreceptors in the retina of a diurnal rodent, the agouti (Dasyprocta aguti).
    Rocha FA; Ahnelt PK; Peichl L; Saito CA; Silveira LC; De Lima SM
    Vis Neurosci; 2009; 26(2):167-75. PubMed ID: 19250601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive plasticity during the development of colour vision.
    Wagner HJ; Kröger RH
    Prog Retin Eye Res; 2005 Jul; 24(4):521-36. PubMed ID: 15845347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.