BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 12833514)

  • 21. Phosphoproteomic Analysis of Isolated Mitochondria in Yeast.
    Renvoisé M; Bonhomme L; Davanture M; Zivy M; Lemaire C
    Methods Mol Biol; 2017; 1636():283-299. PubMed ID: 28730486
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Free-flow electrophoresis system for plasma proteomic applications.
    Wildgruber R; Yi J; Nissum M; Eckerskorn C; Weber G
    Methods Mol Biol; 2008; 424():287-300. PubMed ID: 18369870
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A comparative proteomic strategy for subcellular proteome research: ICAT approach coupled with bioinformatics prediction to ascertain rat liver mitochondrial proteins and indication of mitochondrial localization for catalase.
    Jiang XS; Dai J; Sheng QH; Zhang L; Xia QC; Wu JR; Zeng R
    Mol Cell Proteomics; 2005 Jan; 4(1):12-34. PubMed ID: 15507458
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Preparation of Highly Enriched ER Membranes Using Free-Flow Electrophoresis.
    Parsons HT
    Methods Mol Biol; 2018; 1691():103-115. PubMed ID: 29043672
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Global analysis of the mitochondrial N-proteome identifies a processing peptidase critical for protein stability.
    Vögtle FN; Wortelkamp S; Zahedi RP; Becker D; Leidhold C; Gevaert K; Kellermann J; Voos W; Sickmann A; Pfanner N; Meisinger C
    Cell; 2009 Oct; 139(2):428-39. PubMed ID: 19837041
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Comparative proteome analysis of hepatoma cells at subcellular level].
    Li X; Pan W; Qiu F; Qiu ZY
    Fen Zi Xi Bao Sheng Wu Xue Bao; 2006 Oct; 39(5):399-406. PubMed ID: 17117549
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Goat (Capra hircus) Mammary Gland Mitochondrial Proteome: A Study on the Effect of Weight Loss Using Blue-Native PAGE and Two-Dimensional Gel Electrophoresis.
    Cugno G; Parreira JR; Ferlizza E; Hernández-Castellano LE; Carneiro M; Renaut J; Castro N; Arguello A; Capote J; Campos AM; Almeida AM
    PLoS One; 2016; 11(3):e0151599. PubMed ID: 27031334
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High throughput two-dimensional blue-native electrophoresis: a tool for functional proteomics of mitochondria and signaling complexes.
    Brookes PS; Pinner A; Ramachandran A; Coward L; Barnes S; Kim H; Darley-Usmar VM
    Proteomics; 2002 Aug; 2(8):969-77. PubMed ID: 12203892
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Proteomics of yeast mitochondria.
    Reinders J; Sickmann A
    Methods Mol Biol; 2007; 372():543-57. PubMed ID: 18314750
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Isolation of mitochondria from cells and tissues.
    Liao PC; Bergamini C; Fato R; Pon LA; Pallotti F
    Methods Cell Biol; 2020; 155():3-31. PubMed ID: 32183964
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Advanced tools for the analysis of protein phosphorylation in yeast mitochondria.
    Walter C; Gonczarowska-Jorge H; Sickmann A; Zahedi RP; Meisinger C; Schmidt O
    Anal Biochem; 2018 Aug; 554():23-27. PubMed ID: 29803787
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mitochondrial proteomes of porcine kidney cortex and medulla: foundation for translational proteomics.
    Tuma Z; Kuncova J; Mares J; Matejovic M
    Clin Exp Nephrol; 2016 Feb; 20(1):39-49. PubMed ID: 26072732
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Application of free-flow electrophoresis to the purification of trichosanthin from a crude product of acetone fractional precipitation.
    Song JF; Liu T; Shen X; Wu GD; Xia QC
    Electrophoresis; 1998 Jun; 19(7):1097-103. PubMed ID: 9662170
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Changes in the mitochondrial proteome of developing maize seed embryos.
    Wang WQ; Wang Y; Zhang Q; Møller IM; Song SQ
    Physiol Plant; 2018 Aug; 163(4):552-572. PubMed ID: 29575040
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Expanding the subproteome of the inner mitochondria using protein separation technologies: one- and two-dimensional liquid chromatography and two-dimensional gel electrophoresis.
    McDonald T; Sheng S; Stanley B; Chen D; Ko Y; Cole RN; Pedersen P; Van Eyk JE
    Mol Cell Proteomics; 2006 Dec; 5(12):2392-411. PubMed ID: 17000643
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vitro analysis of yeast mitochondrial protein import.
    Stuart RA; Koehler CM
    Curr Protoc Cell Biol; 2007 Mar; Chapter 11():Unit 11.19. PubMed ID: 18228496
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative analyses of cell disruption methods for mitochondrial isolation in high-throughput proteomics study.
    Chaiyarit S; Thongboonkerd V
    Anal Biochem; 2009 Nov; 394(2):249-58. PubMed ID: 19622339
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessment of Mitochondrial Protein Composition and Purity by Mass Spectroscopy.
    Tang A; Wang Y; Taylor NL
    Methods Mol Biol; 2022; 2363():121-152. PubMed ID: 34545491
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Continuous free-flow electrophoresis separation of cytosolic proteins from the human colon carcinoma cell line LIM 1215: a non two-dimensional gel electrophoresis-based proteome analysis strategy.
    Hoffmann P; Ji H; Moritz RL; Connolly LM; Frecklington DF; Layton MJ; Eddes JS; Simpson RJ
    Proteomics; 2001 Jul; 1(7):807-18. PubMed ID: 11503205
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Novel insights into phenotype and mitochondrial proteome of yeast mutants lacking proteins Sco1p or Sco2p.
    Gamberi T; Magherini F; Borro M; Gentile G; Cavalieri D; Marchi E; Modesti A
    Mitochondrion; 2009 Apr; 9(2):103-14. PubMed ID: 19460303
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.