These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 12833965)

  • 21. Strategies for formaldehyde detection in flames and engines using a single-mode Nd:YAG/OPO laser system.
    Brackmann C; Li Z; Rupinski M; Docquier N; Pengloan G; Aldén M
    Appl Spectrosc; 2005 Jun; 59(6):763-8. PubMed ID: 16053542
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of a differential-absorption lidar system for measurement of atmospheric atomic mercury by use of the third harmonic of an LDS-dye laser.
    Nayuki T; Marumoto K; Fujii T; Fukuchi T; Nemoto K; Shirakawa A; Ueda K
    Appl Opt; 2004 Dec; 43(35):6487-91. PubMed ID: 15617287
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High pulse repetition frequency, multiple wavelength, pulsed CO(2) lidar system for atmospheric transmission and target reflectance measurements.
    Ben-David A; Emery SL; Gotoff SW; D'Amico FM
    Appl Opt; 1992 Jul; 31(21):4224-32. PubMed ID: 20725406
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-energy, efficient, 30-Hz ultraviolet laser sources for airborne ozone-lidar systems.
    Elsayed KA; Chen S; Petway LB; Meadows BL; Marsh WD; Edwards WC; Barnes JC; DeYoung RJ
    Appl Opt; 2002 May; 41(15):2734-9. PubMed ID: 12027160
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Atmospheric boundary layer CO
    Cadiou E; Mammez D; Dherbecourt JB; Gorju G; Pelon J; Melkonian JM; Godard A; Raybaut M
    Opt Lett; 2017 Oct; 42(20):4044-4047. PubMed ID: 29028008
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of a solid-state sodium Doppler lidar using an all-fiber-coupled injection seeding unit for simultaneous temperature and wind measurements in the mesopause region.
    Xia Y; Du L; Cheng X; Li F; Wang J; Wang Z; Yang Y; Lin X; Xun Y; Gong S; Yang G
    Opt Express; 2017 Mar; 25(5):5264-5278. PubMed ID: 28380790
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of an airborne triple-pulsed 2 μm IPDA lidar for simultaneous and independent atmospheric water vapor and carbon dioxide measurements.
    Refaat TF; Singh UN; Yu J; Petros M; Ismail S; Kavaya MJ; Davis KJ
    Appl Opt; 2015 Feb; 54(6):1387-98. PubMed ID: 25968204
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Compact airborne lidar for tropospheric ozone: description and field measurements.
    Ancellet G; Ravetta FO
    Appl Opt; 1998 Aug; 37(24):5509-21. PubMed ID: 18286036
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fluorescence from atmospheric aerosols observed with a multi-channel lidar spectrometer.
    Sugimoto N; Huang Z; Nishizawa T; Matsui I; Tatarov B
    Opt Express; 2012 Sep; 20(19):20800-7. PubMed ID: 23037203
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Atmospheric atomic mercury monitoring using differential absorption lidar techniques.
    Edner H; Faris GW; Sunesson A; Svanberg S
    Appl Opt; 1989 Mar; 28(5):921-30. PubMed ID: 20548585
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Compact high-pulse-energy ultraviolet laser source for ozone lidar measurements.
    Elsayed KA; DeYoung RJ; Petway LB; Edwards WC; Barnes JC; Elsayed-Ali HE
    Appl Opt; 2003 Nov; 42(33):6650-60. PubMed ID: 14658468
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lidar Observation of Cloud.
    Collis RT
    Science; 1965 Aug; 149(3687):978-81. PubMed ID: 17832581
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Towards quantitative atmospheric water vapor profiling with differential absorption lidar.
    Dinovitser A; Gunn LJ; Abbott D
    Opt Express; 2015 Aug; 23(17):22907-21. PubMed ID: 26368258
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sensitivity analysis of differential absorption lidar measurements in the mid-infrared region.
    Ambrico PF; Amodeo A; Di Girolamo P; Spinelli N
    Appl Opt; 2000 Dec; 39(36):6847-65. PubMed ID: 18354699
    [TBL] [Abstract][Full Text] [Related]  

  • 35. RAMSES: German Meteorological Service autonomous Raman lidar for water vapor, temperature, aerosol, and cloud measurements.
    Reichardt J; Wandinger U; Klein V; Mattis I; Hilber B; Begbie R
    Appl Opt; 2012 Dec; 51(34):8111-31. PubMed ID: 23207381
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Using a multiwavelength LiDAR for improved remote sensing of natural waters.
    Gray DJ; Anderson J; Nelson J; Edwards J
    Appl Opt; 2015 Nov; 54(31):F232-42. PubMed ID: 26560612
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tunable mid-infrared MHz-rate picosecond pulses generated by optical parametric amplification of white-light continuum in GaSe.
    Petrov GI; Vodopyanov KL; Yakovlev VV
    Opt Lett; 2007 Mar; 32(5):515-7. PubMed ID: 17392906
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simultaneous detection of the Ca and Ca
    Wu F; Zheng H; Cheng X; Yang Y; Li F; Gong S; Du L; Wang J; Yang G
    Appl Opt; 2020 May; 59(13):4122-4130. PubMed ID: 32400688
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Methods for optical adjustment in lidar systems.
    Liu B; Yi F; Yu CM
    Appl Opt; 2005 Mar; 44(8):1480-4. PubMed ID: 15796249
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Remote measurement of atmospheric mercury using differential absorption lidar.
    Aldén M; Edner H; Svanberg S
    Opt Lett; 1982 May; 7(5):221-3. PubMed ID: 19710878
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.