These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 12834177)

  • 1. Differences in the permeability of high-flux dialyzer membranes for bacterial pyrogens.
    Schindler R; Christ-Kohlrausch F; Frei U; Shaldon S
    Clin Nephrol; 2003 Jun; 59(6):447-54. PubMed ID: 12834177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyrogen transfer across high- and low-flux hemodialysis membranes.
    Weber V; Linsberger I; Rossmanith E; Weber C; Falkenhagen D
    Artif Organs; 2004 Feb; 28(2):210-7. PubMed ID: 14961961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induction of IL-1 during hemodialysis: transmembrane passage of intact endotoxins (LPS).
    Laude-Sharp M; Caroff M; Simard L; Pusineri C; Kazatchkine MD; Haeffner-Cavaillon N
    Kidney Int; 1990 Dec; 38(6):1089-94. PubMed ID: 2127434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyrogen retention by highly permeable synthetic membranes during in vitro dialysis.
    Lonnemann G; Sereni L; Lemke HD; Tetta C
    Artif Organs; 2001 Dec; 25(12):951-60. PubMed ID: 11843762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pyrogen retention by the Asahi APS-650 polysulfone dialyzer during in vitro dialysis with whole human donor blood.
    Linnenweber S; Lonnemann G
    ASAIO J; 2000; 46(4):444-7. PubMed ID: 10926143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transmembrane passage of cytokine-inducing bacterial products across new and reprocessed polysulfone dialyzers.
    Sundaram S; Barrett TW; Meyer KB; Perrella C; Neto MC; King AJ; Pereira BJ
    J Am Soc Nephrol; 1996 Oct; 7(10):2183-91. PubMed ID: 8915979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Permeability of dialyzer membranes to TNF alpha-inducing substances derived from water bacteria.
    Lonnemann G; Behme TC; Lenzner B; Floege J; Schulze M; Colton CK; Koch KM; Shaldon S
    Kidney Int; 1992 Jul; 42(1):61-8. PubMed ID: 1635355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. No evidence for endotoxin transfer across high flux polysulfone membranes.
    Bommer J; Becker KP; Urbaschek R; Ritz E; Urbaschek B
    Clin Nephrol; 1987 Jun; 27(6):278-82. PubMed ID: 3608251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential transfer of endotoxin across high-flux polysulfone membranes.
    Bommer J; Becker KP; Urbaschek R
    J Am Soc Nephrol; 1996 Jun; 7(6):883-8. PubMed ID: 8793797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of endotoxin-contaminated dialysate and polysulfone or cellulosic membranes on the release of TNF alpha during simulated dialysis.
    Arduino MJ; Bland LA; McAllister SK; Favero MS
    Artif Organs; 1995 Sep; 19(9):880-6. PubMed ID: 8687293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retention of cytokine-inducing substances inside high-flux dialyzers.
    Lufft V; Mahiout A; Shaldon S; Koch KM; Schindler R
    Blood Purif; 1996; 14(1):26-34. PubMed ID: 8718562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipopolysaccharide-binding protein and bactericidal/permeability-increasing factor during hemodialysis: clinical determinants and role of different membranes.
    Sundaram S; King AJ; Pereira BJ
    J Am Soc Nephrol; 1997 Mar; 8(3):463-70. PubMed ID: 9071715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New polyether sulfone dialyzers attenuate passage of cytokine-inducing substances from pseudomonas aeruginosa contaminated dialysate.
    Jaber BL; Gonski JA; Cendoroglo M; Balakrishnan VS; Razeghi P; Dinarello CA; Pereira BJ
    Blood Purif; 1998; 16(4):210-9. PubMed ID: 9736790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced cytokine induction and removal of complement products with synthetic hemodialysis membranes.
    Schindler R; Ertl T; Beck W; Lepenies J; Boenisch O; Oppermann M; Kaspar E; Frei U
    Blood Purif; 2006; 24(2):203-11. PubMed ID: 16373999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Comparison of the hemodialysis adequacy conducted based on low-flux polysulfone dialyzers and high-flux helixone dialyzers].
    Sobaszek-Pitas M; Kopeć J; Krzanowski M; Sułowicz W
    Przegl Lek; 2014; 71(7):384-8. PubMed ID: 25338334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrafiltration using the polysulfone membrane to reduce the cytokine-inducing activity of contaminated dialysate.
    Lonnemann G; Schindler R
    Clin Nephrol; 1994 Jul; 42 Suppl 1():S37-43. PubMed ID: 7923982
    [No Abstract]   [Full Text] [Related]  

  • 17. Assessment of the association between increasing membrane pore size and endotoxin permeability using a novel experimental dialysis simulation set-up.
    Schepers E; Glorieux G; Eloot S; Hulko M; Boschetti-de-Fierro A; Beck W; Krause B; Van Biesen W
    BMC Nephrol; 2018 Jan; 19(1):1. PubMed ID: 29304774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blood components influence cytokine induction by bacterial substances.
    Schindler R; Eichert F; Lepenies J; Frei U
    Blood Purif; 2001; 19(4):380-7. PubMed ID: 11574734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transfer of cytokine-inducing bacterial products across hemodialyzer membranes in the presence of plasma or whole blood.
    Pereira BJ; Sundaram S; Barrett TW; Butt NK; Porat R; King AJ; Dinarello CA
    Clin Nephrol; 1996 Dec; 46(6):394-401. PubMed ID: 8982556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial challenge of NISSHO ultrafilter ETF 609: results of in vitro testing.
    Krautzig S; Lonnemann G; Shaldon S; Koch KM
    Artif Organs; 1996 Jul; 20(7):798-800. PubMed ID: 8828771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.