These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 12834593)

  • 1. Synthesis and characterization of needlelike apatitic nanocomposite with controlled aspect ratios.
    Liou SC; Chen SY; Liu DM
    Biomaterials; 2003 Oct; 24(22):3981-8. PubMed ID: 12834593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manipulation of nanoneedle and nanosphere apatite/poly(acrylic acid) nanocomposites.
    Liou SC; Chen SY; Liu DM
    J Biomed Mater Res B Appl Biomater; 2005 Apr; 73(1):117-22. PubMed ID: 15672405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and characterization of hydroxyapatite whiskers by hydrothermal homogeneous precipitation using acetamide.
    Zhang H; Darvell BW
    Acta Biomater; 2010 Aug; 6(8):3216-22. PubMed ID: 20149902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro mineralization of gelatin-polyacrylic acid complex matrices.
    Bigi A; Bracci B; Cojazzi G; Panzavolta S; Rubini K
    J Biomater Sci Polym Ed; 2004; 15(3):243-54. PubMed ID: 15147160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The formation of hydroxyapatite-ionomer cements at 38 degrees C.
    TenHuisen KS; Brown PW
    J Dent Res; 1994 Mar; 73(3):598-606. PubMed ID: 8163730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydroxyapatite micro- and nanoparticles: nucleation and growth mechanisms in the presence of citrate species.
    Martins MA; Santos C; Almeida MM; Costa ME
    J Colloid Interface Sci; 2008 Feb; 318(2):210-6. PubMed ID: 17996882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One- and three-dimensional growth of hydroxyapatite nanowires during sol-gel-hydrothermal synthesis.
    Costa DO; Dixon SJ; Rizkalla AS
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1490-9. PubMed ID: 22296410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ growth of hydroxyapatite within electrospun poly(DL-lactide) fibers.
    Cui W; Li X; Zhou S; Weng J
    J Biomed Mater Res A; 2007 Sep; 82(4):831-41. PubMed ID: 17326137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase development and structural characterization of calcium phosphate ceramics-polyacrylic acid nanocomposites at room temperature in water-methanol mixtures.
    Liou SC; Chen SY; Liu DM
    J Mater Sci Mater Med; 2004 Dec; 15(12):1261-6. PubMed ID: 15747177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of Leucine on the crystal growth of calcium phosphate.
    Dalas E; Malkaj P; Vasileiou Z; Kanellopoulou DG
    J Mater Sci Mater Med; 2008 Jan; 19(1):277-82. PubMed ID: 17597364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and characterization of chitosan-poly(acrylic acid) nanoparticles.
    Hu Y; Jiang X; Ding Y; Ge H; Yuan Y; Yang C
    Biomaterials; 2002 Aug; 23(15):3193-201. PubMed ID: 12102191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of positively charged calcium hydroxyapatite nano-crystals and their adsorption behavior of proteins.
    Kandori K; Oda S; Fukusumi M; Morisada Y
    Colloids Surf B Biointerfaces; 2009 Oct; 73(1):140-5. PubMed ID: 19515538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel apatite-based sorbent for defluoridation: synthesis and sorption characteristics of nano-micro-crystalline hydroxyapatite-coated-limestone.
    Kanno CM; Sanders RL; Flynn SM; Lessard G; Myneni SC
    Environ Sci Technol; 2014 May; 48(10):5798-807. PubMed ID: 24766407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modification of hydroxyapatite/gelatin nanocomposite using polyacrylamide.
    Chang MC; Kim UK; Douglas WH
    J Biomater Sci Polym Ed; 2009; 20(3):363-75. PubMed ID: 19192361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mimicking the growth of a pathologic biomineral: shape development and structures of calcium oxalate dihydrate in the presence of polyacrylic acid.
    Thomas A; Rosseeva E; Hochrein O; Carrillo-Cabrera W; Simon P; Duchstein P; Zahn D; Kniep R
    Chemistry; 2012 Mar; 18(13):4000-9. PubMed ID: 22354632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Designed fabrication of unique eccentric mesoporous silica nanocluster-based core-shell nanostructures for pH-responsive drug delivery.
    Chen L; Li L; Zhang L; Xing S; Wang T; Wang YA; Wang C; Su Z
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):7282-90. PubMed ID: 23808730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly(acrylic acid)-grafted poly(N-isopropyl acrylamide) networks: preparation, characterization and hydrogel behavior.
    Yu R; Zheng S
    J Biomater Sci Polym Ed; 2011; 22(17):2305-24. PubMed ID: 21092421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of dual temperature - and pH-responsive yolk-shell nanoparticles by conventional etching and new deswelling approaches: DOX release behavior.
    Nikravan G; Haddadi-Asl V; Salami-Kalajahi M
    Colloids Surf B Biointerfaces; 2018 May; 165():1-8. PubMed ID: 29448215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the study of BSA-loaded calcium-deficient hydroxyapatite nano-carriers for controlled drug delivery.
    Liu TY; Chen SY; Liu DM; Liou SC
    J Control Release; 2005 Sep; 107(1):112-21. PubMed ID: 15982777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of Ca/P concentration and temperature of simulated body fluid on the growth of hydroxyapatite coating on alkali-treated 316L stainless steel.
    Lin FH; Hsu YS; Lin SH; Sun JS
    Biomaterials; 2002 Oct; 23(19):4029-38. PubMed ID: 12162336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.