BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 12834723)

  • 1. Redox dynamics during recovery of an oil-impacted estuarine wetland.
    LaRiviere DJ; Autenrieth RL; Bonner JS
    Water Res; 2003 Aug; 37(14):3307-18. PubMed ID: 12834723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrinsic bioremediation of a petroleum-impacted wetland.
    Mills MA; Bonner JS; McDonald TJ; Page CA; Autenrieth RL
    Mar Pollut Bull; 2003 Jul; 46(7):887-99. PubMed ID: 12837307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bridging spatially segregated redox zones with a microbial electrochemical snorkel triggers biogeochemical cycles in oil-contaminated River Tyne (UK) sediments.
    Viggi CC; Matturro B; Frascadore E; Insogna S; Mezzi A; Kaciulis S; Sherry A; Mejeha OK; Head IM; Vaiopoulou E; Rabaey K; Rossetti S; Aulenta F
    Water Res; 2017 Dec; 127():11-21. PubMed ID: 29020640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of toxicity bioassays to monitor the recovery of oiled wetland sediments.
    Mueller DC; Bonner JS; McDonald SJ; Autenrieth RL; Donnelly KC; Lee K; Doe K; Anderson J
    Environ Toxicol Chem; 2003 Sep; 22(9):1945-55. PubMed ID: 12959519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on the fate of petroleum-derived polycyclic aromatic hydrocarbons (PAHs) and the effect of chemical dispersant using an enclosed ecosystem, mesocosm.
    Yamada M; Takada H; Toyoda K; Yoshida A; Shibata A; Nomura H; Wada M; Nishimura M; Okamoto K; Ohwada K
    Mar Pollut Bull; 2003; 47(1-6):105-13. PubMed ID: 12787605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Behavior of a chemically dispersed oil in a wetland environment.
    Page CA; Bonner JS; McDonald TJ; Autenrieth RL
    Water Res; 2002 Sep; 36(15):3821-33. PubMed ID: 12369528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of bioturbation on the fate of oil in coastal sandy sediments--an in situ experiment.
    Timmermann K; Banta GT; Klinge L; Andersen O
    Chemosphere; 2011 Mar; 82(10):1358-66. PubMed ID: 21186046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of exposure of crude oil and dispersant (COREXIT® EC 9500A) on denitrification and organic matter mineralization in a Louisiana salt marsh sediment.
    Shi R; Yu K
    Chemosphere; 2014 Aug; 108():300-5. PubMed ID: 24582034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradation of petroleum hydrocarbons in estuarine sediments: metal influence.
    Almeida R; Mucha AP; Teixeira C; Bordalo AA; Almeida CM
    Biodegradation; 2013 Feb; 24(1):111-23. PubMed ID: 22692293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biogeochemistry at a wetland sediment-alluvial aquifer interface in a landfill leachate plume.
    Lorah MM; Cozzarelli IM; Böhlke JK
    J Contam Hydrol; 2009 Apr; 105(3-4):99-117. PubMed ID: 19136178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Level and degradation of Deepwater Horizon spilled oil in coastal marsh sediments and pore-water.
    Natter M; Keevan J; Wang Y; Keimowitz AR; Okeke BC; Son A; Lee MK
    Environ Sci Technol; 2012 Jun; 46(11):5744-55. PubMed ID: 22571231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradation of crude oil from the BP oil spill in the marsh sediments of southeast Louisiana, USA.
    Boopathy R; Shields S; Nunna S
    Appl Biochem Biotechnol; 2012 Jul; 167(6):1560-8. PubMed ID: 22350940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen dynamics in crude oil contaminated salt marshes: II. Carbonaceous sediment oxygen demand model.
    Shin WS; Pardue JH; Choi SJ
    Environ Technol; 2001 Jul; 22(7):855-67. PubMed ID: 11506210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of manipulating sediment pH on the porewater chemistry of copper- and zinc-spiked sediments.
    Hutchins CM; Teasdale PR; Lee J; Simpson SL
    Chemosphere; 2007 Oct; 69(7):1089-99. PubMed ID: 17572473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A study of natural attenuation processes involved in a microcosm model of a crude oil-impacted wetland sediment in the Niger Delta.
    Abu GO; Dike PO
    Bioresour Technol; 2008 Jul; 99(11):4761-7. PubMed ID: 17988860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mineralization of PAHs in coal-tar impacted aquifer sediments and associated microbial community structure investigated with FISH.
    Rogers SW; Ong SK; Moorman TB
    Chemosphere; 2007 Nov; 69(10):1563-73. PubMed ID: 17617439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradation of petroleum hydrocarbons at low temperature in the presence of the dispersant Corexit 9500.
    Lindstrom JE; Braddock JF
    Mar Pollut Bull; 2002 Aug; 44(8):739-47. PubMed ID: 12269476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing the intrinsic bioremediation of PAH-contaminated anoxic estuarine sediments with biostimulating agents.
    Bach QD; Kim SJ; Choi SC; Oh YS
    J Microbiol; 2005 Aug; 43(4):319-24. PubMed ID: 16145545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The 1974 spill of the Bouchard 65 oil barge: petroleum hydrocarbons persist in Winsor Cove salt marsh sediments.
    Peacock EE; Hampson GR; Nelson RK; Xu L; Frysinger GS; Gaines RB; Farrington JW; Tripp BW; Reddy CM
    Mar Pollut Bull; 2007 Feb; 54(2):214-25. PubMed ID: 17126858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The distribution and composition of hydrocarbons in sediments from the Fladen Ground, North Sea, an area of oil production.
    Ahmed AS; Webster L; Pollard P; Davies IM; Russell M; Walsham P; Packer G; Moffat CF
    J Environ Monit; 2006 Feb; 8(2):307-16. PubMed ID: 16470264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.