These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 12834732)

  • 1. Phosphorus adsorption maximum of sands for use as media in subsurface flow constructed reed beds as measured by the Langmuir isotherm.
    Del Bubba M; Arias CA; Brix H
    Water Res; 2003 Aug; 37(14):3390-400. PubMed ID: 12834732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorus removal by sands for use as media in subsurface flow constructed reed beds.
    Arias CA; Del Bubba M; Brix H
    Water Res; 2001 Apr; 35(5):1159-68. PubMed ID: 11268836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Media selection for sustainable phosphorus removal in subsurface flow constructed wetlands.
    Brix H; Arias CA; del Bubba M
    Water Sci Technol; 2001; 44(11-12):47-54. PubMed ID: 11804137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigations on phosphorus retention in subsurface flow constructed wetlands.
    Rustige H; Tomac I; Höner G
    Water Sci Technol; 2003; 48(5):67-74. PubMed ID: 14621149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on the phosphorus sorption capacity of substrates used in constructed wetland systems.
    Xu D; Xu J; Wu J; Muhammad A
    Chemosphere; 2006 Apr; 63(2):344-52. PubMed ID: 16242173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorus retention in subsurface constructed wetlands: investigations focused on calcareous materials and their chemical reactions.
    Molle P; Liénard A; Grasmick A; Iwema A
    Water Sci Technol; 2003; 48(5):75-83. PubMed ID: 14621150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorus removal in constructed wetlands: can suitable alternative media be identified?
    Arias CA; Brix H
    Water Sci Technol; 2005; 51(9):267-73. PubMed ID: 16042267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recovery and fractionation of phosphorus retained by lightweight expanded shale and masonry sand used as media in subsurface flow treatment wetlands.
    Forbes MG; Dickson KL; Saleh F; Waller WT; Doyle RD; Hudak P
    Environ Sci Technol; 2005 Jun; 39(12):4621-7. PubMed ID: 16047801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nutrient removal in subsurface flow constructed wetlands for application in sensitive regions.
    Rustige H; Platzer C
    Water Sci Technol; 2001; 44(11-12):149-55. PubMed ID: 11804087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Simulation research on removal efficiency of P-pollutants by several substrates in stormwater].
    Shan BQ; Chen QF; Yin CQ; Hu CX
    Huan Jing Ke Xue; 2007 Oct; 28(10):2280-6. PubMed ID: 18268993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Analysis on the removal efficiency of phosphorus in some substrates used in constructed wetland systems].
    Yuan DH; Jing LJ; Gao SX; Yin DQ; Wang LS
    Huan Jing Ke Xue; 2005 Jan; 26(1):51-5. PubMed ID: 15859408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of blast furnace granulated slag as a substrate in vertical flow reed beds: field application.
    Asuman Korkusuz E; Beklioğlu M; Demirer GN
    Bioresour Technol; 2007 Aug; 98(11):2089-101. PubMed ID: 17070037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Waste green sands as reactive media for the removal of zinc from water.
    Lee T; Park JW; Lee JH
    Chemosphere; 2004 Aug; 56(6):571-81. PubMed ID: 15212900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of copper(II) and lead(II) from aqueous solution by manganese oxide coated sand II. Equilibrium study and competitive adsorption.
    Han R; Lu Z; Zou W; Daotong W; Shi J; Jiujun Y
    J Hazard Mater; 2006 Sep; 137(1):480-8. PubMed ID: 16631305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorus retention in filter materials for wastewater treatment and its subsequent suitability for plant production.
    Hylander LD; Kietlińska A; Renman G; Simán G
    Bioresour Technol; 2006 May; 97(7):914-21. PubMed ID: 15964189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissolved phosphorus retention of light-weight expanded shale and masonry sand used in subsurface flow treatment wetlands.
    Forbes MG; Dickson KR; Golden TD; Hudak P; Doyle RD
    Environ Sci Technol; 2004 Feb; 38(3):892-8. PubMed ID: 14968879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorus retention capacity in red ferralitic soil.
    Pérez MM; Bossens J; Rosa E; Tack FM
    Water Sci Technol; 2014; 70(9):1561-8. PubMed ID: 25401322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorus removal in a vertical upflow constructed wetland system.
    Farahbakhshazad N; Morrison GM
    Water Sci Technol; 2003; 48(5):43-50. PubMed ID: 14621146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Equilibrium studies of sorption of lead(II) ions by different pectin compounds.
    Khotimchenko M; Kovalev V; Khotimchenko Y
    J Hazard Mater; 2007 Nov; 149(3):693-9. PubMed ID: 17513039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorus sorption characteristics of a light-weight aggregate.
    Zhu T; Maehlum T; Jenssen PD; Krogstad T
    Water Sci Technol; 2003; 48(5):93-100. PubMed ID: 14621152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.