These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 12835266)

  • 1. A Bayesian network approach to operon prediction.
    Bockhorst J; Craven M; Page D; Shavlik J; Glasner J
    Bioinformatics; 2003 Jul; 19(10):1227-35. PubMed ID: 12835266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fuzzy guided genetic algorithm for operon prediction.
    Jacob E; Sasikumar R; Nair KN
    Bioinformatics; 2005 Apr; 21(8):1403-7. PubMed ID: 15564303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying operons and untranslated regions of transcripts using Escherichia coli RNA expression analysis.
    Tjaden B; Haynor DR; Stolyar S; Rosenow C; Kolker E
    Bioinformatics; 2002; 18 Suppl 1():S337-44. PubMed ID: 12169564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting bacterial transcription units using sequence and expression data.
    Bockhorst J; Qiu Y; Glasner J; Liu M; Blattner F; Craven M
    Bioinformatics; 2003; 19 Suppl 1():i34-43. PubMed ID: 12855435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A universal operon predictor for prokaryotic genomes.
    Li G; Che D; Xu Y
    J Bioinform Comput Biol; 2009 Feb; 7(1):19-38. PubMed ID: 19226658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A powerful non-homology method for the prediction of operons in prokaryotes.
    Moreno-Hagelsieb G; Collado-Vides J
    Bioinformatics; 2002; 18 Suppl 1():S329-36. PubMed ID: 12169563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequence alignment kernel for recognition of promoter regions.
    Gordon L; Chervonenkis AY; Gammerman AJ; Shahmuradov IA; Solovyev VV
    Bioinformatics; 2003 Oct; 19(15):1964-71. PubMed ID: 14555630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicted transcription factor binding sites as predictors of operons in Escherichia coli and Streptomyces coelicolor.
    Laing E; Sidhu K; Hubbard SJ
    BMC Genomics; 2008 Feb; 9():79. PubMed ID: 18269733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving promoter prediction for the NNPP2.2 algorithm: a case study using Escherichia coli DNA sequences.
    Burden S; Lin YX; Zhang R
    Bioinformatics; 2005 Mar; 21(5):601-7. PubMed ID: 15454410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of co-regulated genes through Bayesian clustering of predicted regulatory binding sites.
    Qin ZS; McCue LA; Thompson W; Mayerhofer L; Lawrence CE; Liu JS
    Nat Biotechnol; 2003 Apr; 21(4):435-9. PubMed ID: 12627170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A probabilistic learning approach to whole-genome operon prediction.
    Craven M; Page D; Shavlik J; Bockhorst J; Glasner J
    Proc Int Conf Intell Syst Mol Biol; 2000; 8():116-27. PubMed ID: 10977072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypothesis-driven approach to predict transcriptional units from gene expression data.
    Steinhauser D; Junker BH; Luedemann A; Selbig J; Kopka J
    Bioinformatics; 2004 Aug; 20(12):1928-39. PubMed ID: 15044239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Operon prediction without a training set.
    Westover BP; Buhler JD; Sonnenburg JL; Gordon JI
    Bioinformatics; 2005 Apr; 21(7):880-8. PubMed ID: 15539453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A probabilistic measure for alignment-free sequence comparison.
    Pham TD; Zuegg J
    Bioinformatics; 2004 Dec; 20(18):3455-61. PubMed ID: 15271780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In silico analysis reveals substantial variability in the gene contents of the gamma proteobacteria LexA-regulon.
    Erill I; Escribano M; Campoy S; Barbé J
    Bioinformatics; 2003 Nov; 19(17):2225-36. PubMed ID: 14630651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detecting uber-operons in prokaryotic genomes.
    Che D; Li G; Mao F; Wu H; Xu Y
    Nucleic Acids Res; 2006; 34(8):2418-27. PubMed ID: 16682449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The relative value of operon predictions.
    Brouwer RW; Kuipers OP; van Hijum SA
    Brief Bioinform; 2008 Sep; 9(5):367-75. PubMed ID: 18420711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-expression pattern from DNA microarray experiments as a tool for operon prediction.
    Sabatti C; Rohlin L; Oh MK; Liao JC
    Nucleic Acids Res; 2002 Jul; 30(13):2886-93. PubMed ID: 12087173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptome dynamics-based operon prediction in prokaryotes.
    Fortino V; Smolander OP; Auvinen P; Tagliaferri R; Greco D
    BMC Bioinformatics; 2014 May; 15():145. PubMed ID: 24884724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conserved Units of Co-Expression in Bacterial Genomes: An Evolutionary Insight into Transcriptional Regulation.
    Junier I; Rivoire O
    PLoS One; 2016; 11(5):e0155740. PubMed ID: 27195891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.