BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 12835926)

  • 1. Glucose oxidation by Gluconobacter oxydans: characterization in shaking-flasks, scale-up and optimization of the pH profile.
    Silberbach M; Maier B; Zimmermann M; Büchs J
    Appl Microbiol Biotechnol; 2003 Jul; 62(1):92-8. PubMed ID: 12835926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-yield 5-keto-D-gluconic acid formation is mediated by soluble and membrane-bound gluconate-5-dehydrogenases of Gluconobacter oxydans.
    Merfort M; Herrmann U; Bringer-Meyer S; Sahm H
    Appl Microbiol Biotechnol; 2006 Nov; 73(2):443-51. PubMed ID: 16820953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modification of the membrane-bound glucose oxidation system in Gluconobacter oxydans significantly increases gluconate and 5-keto-D-gluconic acid accumulation.
    Merfort M; Herrmann U; Ha SW; Elfari M; Bringer-Meyer S; Görisch H; Sahm H
    Biotechnol J; 2006 May; 1(5):556-63. PubMed ID: 16892291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Gluconobacter oxydans mutant converting glucose almost quantitatively to 5-keto-D-gluconic acid.
    Elfari M; Ha SW; Bremus C; Merfort M; Khodaverdi V; Herrmann U; Sahm H; Görisch H
    Appl Microbiol Biotechnol; 2005 Mar; 66(6):668-74. PubMed ID: 15735967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gluconobacter oxydans: its biotechnological applications.
    Gupta A; Singh VK; Qazi GN; Kumar A
    J Mol Microbiol Biotechnol; 2001 Jul; 3(3):445-56. PubMed ID: 11361077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gluconobacter oxydans NAD-dependent, D-fructose reducing, polyol dehydrogenases activity: screening, medium optimisation and application for enzymatic polyol production.
    Parmentier S; Beauprez J; Arnaut F; Soetaert W; Vandamme EJ
    Biotechnol Lett; 2005 Mar; 27(5):305-11. PubMed ID: 15834790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glucose oxidation and PQQ-dependent dehydrogenases in Gluconobacter oxydans.
    Hölscher T; Schleyer U; Merfort M; Bringer-Meyer S; Görisch H; Sahm H
    J Mol Microbiol Biotechnol; 2009; 16(1-2):6-13. PubMed ID: 18957858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biotransformation of glycerol to dihydroxyacetone by recombinant Gluconobacter oxydans DSM 2343.
    Gätgens C; Degner U; Bringer-Meyer S; Herrmann U
    Appl Microbiol Biotechnol; 2007 Sep; 76(3):553-9. PubMed ID: 17497148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic engineering of Gluconobacter oxydans for improved growth rate and growth yield on glucose by elimination of gluconate formation.
    Krajewski V; Simic P; Mouncey NJ; Bringer S; Sahm H; Bott M
    Appl Environ Microbiol; 2010 Jul; 76(13):4369-76. PubMed ID: 20453146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biotransformation of glucose to 5-keto-D-gluconic acid by recombinant Gluconobacter oxydans DSM 2343.
    Herrmann U; Merfort M; Jeude M; Bringer-Meyer S; Sahm H
    Appl Microbiol Biotechnol; 2004 Mar; 64(1):86-90. PubMed ID: 14564486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of membrane-bound glucose dehydrogenase overproduction on the respiratory chain of Gluconobacter oxydans.
    Meyer M; Schweiger P; Deppenmeier U
    Appl Microbiol Biotechnol; 2013 Apr; 97(8):3457-66. PubMed ID: 22790543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of 5-keto-d-gluconate production by a recombinant Gluconobacter oxydans using a dissolved oxygen control strategy.
    Yuan J; Wu M; Lin J; Yang L
    J Biosci Bioeng; 2016 Jul; 122(1):10-6. PubMed ID: 26896860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetric oxidation by Gluconobacter oxydans.
    Keliang G; Dongzhi W
    Appl Microbiol Biotechnol; 2006 Mar; 70(2):135-9. PubMed ID: 16432743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of glycerol for producing 1,3-dihydroxyacetone by Gluconobacter oxydans in an airlift bioreactor.
    Hu ZC; Zheng YG; Shen YC
    Bioresour Technol; 2011 Jul; 102(14):7177-82. PubMed ID: 21592784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of 1,3-dihydroxyacetone production by a UV-induced mutant of Gluconobacter oxydans with DO control strategy.
    Hu ZC; Zheng YG
    Appl Biochem Biotechnol; 2011 Nov; 165(5-6):1152-60. PubMed ID: 21833510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of 5-ketofructose from fructose or sucrose using genetically modified Gluconobacter oxydans strains.
    Siemen A; Kosciow K; Schweiger P; Deppenmeier U
    Appl Microbiol Biotechnol; 2018 Feb; 102(4):1699-1710. PubMed ID: 29279957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A model system for increasing the intensity of whole-cell biocatalysis: investigation of the rate of oxidation of D-sorbitol to L-sorbose by thin bi-layer latex coatings of non-growing Gluconobacter oxydans.
    Fidaleo M; Charaniya S; Solheid C; Diel U; Laudon M; Ge H; Scriven LE; Flickinger MC
    Biotechnol Bioeng; 2006 Oct; 95(3):446-58. PubMed ID: 16804947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of D-gluconic acid production in selected strains of acetic acid bacteria.
    Sainz F; Navarro D; Mateo E; Torija MJ; Mas A
    Int J Food Microbiol; 2016 Apr; 222():40-7. PubMed ID: 26848948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of scale-down techniques for investigation of recombinant Escherichia coli fermentations: acid metabolites in shake flasks and stirred bioreactors.
    Dahlgren ME; Powell AL; Greasham RL; George HA
    Biotechnol Prog; 1993; 9(6):580-6. PubMed ID: 7764346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Optimization of the fermentation conditions for 5-keto-D-gluconic acid production].
    Li B; Pan H; Sun W; Cheng Y; Xie Z; Zhang J
    Sheng Wu Gong Cheng Xue Bao; 2014 Sep; 30(9):1486-90. PubMed ID: 25720164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.