These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 12835926)

  • 21. Enhancement of cell growth and glycolic acid production by overexpression of membrane-bound alcohol dehydrogenase in Gluconobacter oxydans DSM 2003.
    Zhang H; Shi L; Mao X; Lin J; Wei D
    J Biotechnol; 2016 Nov; 237():18-24. PubMed ID: 27619641
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Production of 1,3-dihydroxyacetone from glycerol by Gluconobacter oxydans ZJB09112.
    Hu ZC; Liu ZQ; Zheng YG; Shen YC
    J Microbiol Biotechnol; 2010 Feb; 20(2):340-5. PubMed ID: 20208438
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Unique glucose oxidation catalysis of Gluconobacter oxydans constitutes an efficient cellulosic gluconic acid fermentation free of inhibitory compounds disturbance.
    Zhou P; Yao R; Zhang H; Bao J
    Biotechnol Bioeng; 2019 Sep; 116(9):2191-2199. PubMed ID: 31081135
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Three-factor response surface optimization of the production of dextran dextrinase by Gluconobacter oxydans.
    Naessens M; Vercauteren R; Vandamme EJ
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(3a):303-6. PubMed ID: 15954607
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Overexpression of membrane-bound gluconate-2-dehydrogenase to enhance the production of 2-keto-D-gluconic acid by Gluconobacter oxydans.
    Li K; Mao X; Liu L; Lin J; Sun M; Wei D; Yang S
    Microb Cell Fact; 2016 Jul; 15(1):121. PubMed ID: 27392695
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Study of the inhibitory effect of the product dihydroxyacetone on Gluconobacter oxydans in a semi-continuous two-stage repeated-fed-batch process.
    Bauer R; Katsikis N; Varga S; Hekmat D
    Bioprocess Biosyst Eng; 2005 Nov; 28(1):37-43. PubMed ID: 16044287
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High cell density fermentation of Gluconobacter oxydans DSM 2003 for glycolic acid production.
    Wei G; Yang X; Gan T; Zhou W; Lin J; Wei D
    J Ind Microbiol Biotechnol; 2009 Aug; 36(8):1029-34. PubMed ID: 19434434
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of oxygen limitation, absence of the cytochrome bc(1) complex and low pH on global gene expression in Gluconobacter oxydans 621H using DNA microarray technology.
    Hanke T; Richhardt J; Polen T; Sahm H; Bringer S; Bott M
    J Biotechnol; 2012 Feb; 157(3):359-72. PubMed ID: 22226911
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Knockout and overexpression of pyrroloquinoline quinone biosynthetic genes in Gluconobacter oxydans 621H.
    Hölscher T; Görisch H
    J Bacteriol; 2006 Nov; 188(21):7668-76. PubMed ID: 16936032
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Capillary electrophoresis for the monitoring of carboxylic acid production by Gluconobacter oxydans.
    Turkia H; Sirén H; Pitkänen JP; Wiebe M; Penttilä M
    J Chromatogr A; 2010 Feb; 1217(9):1537-42. PubMed ID: 20074741
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimization of immobilization for selective oxidation of benzyl alcohol by Gluconobacter oxydans using response surface methodology.
    Wu J; Wang JL; Li MH; Lin JP; Wei DZ
    Bioresour Technol; 2010 Dec; 101(23):8936-41. PubMed ID: 20667717
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Effects of carbon and nitrogen sources on 5-keto-gluconic acid production].
    Tan Z; Wang H; Wei Y; Li Y; Zhong C; Jia S
    Sheng Wu Gong Cheng Xue Bao; 2014 Jan; 30(1):76-82. PubMed ID: 24818481
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mutation of Gluconobacter oxydans and Bacillus megaterium in a two-step process of l-ascorbic acid manufacture by ion beam.
    Xu A; Yao J; Yu L; Lv S; Wang J; Yan B; Yu Z
    J Appl Microbiol; 2004; 96(6):1317-23. PubMed ID: 15139924
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improvement of 1,3-dihydroxyacetone production from Gluconobacter oxydans by ion beam implantation.
    Hu ZC; Liu ZQ; Xu JM; Zheng YG; Shen YC
    Prep Biochem Biotechnol; 2012; 42(1):15-28. PubMed ID: 22239705
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Selective, high conversion of D-glucose to 5-keto-D-gluoconate by Gluconobacter suboxydans.
    Ano Y; Shinagawa E; Adachi O; Toyama H; Yakushi T; Matsushita K
    Biosci Biotechnol Biochem; 2011; 75(3):586-9. PubMed ID: 21389606
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Advance in dihydroxyacetone production by microbial fermentation].
    Xu X; Chen X; Jin M; Wu X; Wang X
    Sheng Wu Gong Cheng Xue Bao; 2009 Jun; 25(6):903-8. PubMed ID: 19777820
    [TBL] [Abstract][Full Text] [Related]  

  • 37. New developments in oxidative fermentation.
    Adachi O; Moonmangmee D; Toyama H; Yamada M; Shinagawa E; Matsushita K
    Appl Microbiol Biotechnol; 2003 Feb; 60(6):643-53. PubMed ID: 12664142
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dihydroxyacetone production from glycerol using Gluconobacter oxydans: Study of medium composition and operational conditions in shaken flasks.
    de la Morena S; Acedos MG; Santos VE; García-Ochoa F
    Biotechnol Prog; 2019 Jul; 35(4):e2803. PubMed ID: 30840359
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Continuous co-production of biomass and bio-oxidized metabolite (sorbose) using Gluconobacter oxydans in a high-oxygen tension bioreactor.
    Zhou X; Hua X; Zhou X; Xu Y; Zhang W
    Bioresour Technol; 2019 Apr; 277():221-224. PubMed ID: 30658939
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dehydrogenation of ribitol with Gluconobacter oxydans: production and stability of L-ribulose.
    De Muynck C; Pereira C; Soetaert W; Vandamme E
    J Biotechnol; 2006 Sep; 125(3):408-15. PubMed ID: 16650498
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.