These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 12836031)

  • 21. A reflexive neural network for dynamic biped walking control.
    Geng T; Porr B; Wörgötter F
    Neural Comput; 2006 May; 18(5):1156-96. PubMed ID: 16595061
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A salamander's flexible spinal network for locomotion, modeled at two levels of abstraction.
    Knüsel J; Bicanski A; Ryczko D; Cabelguen JM; Ijspeert AJ
    Integr Comp Biol; 2013 Aug; 53(2):269-82. PubMed ID: 23784700
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling of a bipedal locomotor using coupled nonlinear oscillators of Van der Pol.
    Dutra MS; De Pina Filho AC; Romano VF
    Biol Cybern; 2003 Apr; 88(4):286-92. PubMed ID: 12690487
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oscillations and spiking pairs: behavior of a neuronal model with STDP learning.
    Shen X; Lin X; De Wilde P
    Neural Comput; 2008 Aug; 20(8):2037-69. PubMed ID: 18336082
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of rhythmic patterns produced by spinal neural networks.
    Mor Y; Lev-Tov A
    J Neurophysiol; 2007 Nov; 98(5):2807-17. PubMed ID: 17715187
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Distributed neural networks for controlling human locomotion: lessons from normal and SCI subjects.
    Ivanenko YP; Poppele RE; Lacquaniti F
    Brain Res Bull; 2009 Jan; 78(1):13-21. PubMed ID: 19070781
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Towards a general neural controller for quadrupedal locomotion.
    Maufroy C; Kimura H; Takase K
    Neural Netw; 2008 May; 21(4):667-81. PubMed ID: 18490136
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A survey on CPG-inspired control models and system implementation.
    Yu J; Tan M; Chen J; Zhang J
    IEEE Trans Neural Netw Learn Syst; 2014 Mar; 25(3):441-56. PubMed ID: 24807442
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evolution and analysis of model CPGs for walking: II. General principles and individual variability.
    Beer RD; Chiel HJ; Gallagher JC
    J Comput Neurosci; 1999; 7(2):119-47. PubMed ID: 10515251
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fictive locomotor patterns generated by tetraethylammonium application to the neonatal rat spinal cord in vitro.
    Taccola G; Nistri A
    Neuroscience; 2006; 137(2):659-70. PubMed ID: 16289841
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of a human neuro-musculo-skeletal model for investigation of spinal cord injury.
    Paul C; Bellotti M; Jezernik S; Curt A
    Biol Cybern; 2005 Sep; 93(3):153-70. PubMed ID: 16133587
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Supraspinal locomotor control in quadrupeds and humans.
    Jahn K; Deutschländer A; Stephan T; Kalla R; Hüfner K; Wagner J; Strupp M; Brandt T
    Prog Brain Res; 2008; 171():353-62. PubMed ID: 18718326
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of cyclic dynamics for networks of linear threshold neurons.
    Tang HJ; Tan KC; Zhang W
    Neural Comput; 2005 Jan; 17(1):97-114. PubMed ID: 15563749
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Locomotor pattern in the adult zebrafish spinal cord in vitro.
    Gabriel JP; Mahmood R; Walter AM; Kyriakatos A; Hauptmann G; Calabrese RL; El Manira A
    J Neurophysiol; 2008 Jan; 99(1):37-48. PubMed ID: 17977928
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Central Pattern Generators: Mechanisms of the Activity and Their Role in the Control of "Automatic" Movements].
    Arshavsky I; Deliagina TG; Orlovsky GN
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2015; 65(2):156-87. PubMed ID: 26080596
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chapter 10--a hierarchical perspective on rhythm generation for locomotor control.
    Yakovenko S
    Prog Brain Res; 2011; 188():151-66. PubMed ID: 21333808
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An inter-segmental network model and its use in elucidating gait-switches in the stick insect.
    Daun-Gruhn S; Tóth TI
    J Comput Neurosci; 2011 Aug; 31(1):43-60. PubMed ID: 21165687
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A simulation method for the firing sequences of motor units.
    Jiang N; Englehart KB; Parker PA
    J Electromyogr Kinesiol; 2007 Oct; 17(5):527-34. PubMed ID: 16973380
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oscillations and oscillatory behavior in small neural circuits.
    Selverston AI; Ayers J
    Biol Cybern; 2006 Dec; 95(6):537-54. PubMed ID: 17151878
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Delays and oscillations in networks of spiking neurons: a two-timescale analysis.
    Castro DD; Meir R; Yavneh I
    Neural Comput; 2009 Apr; 21(4):1100-24. PubMed ID: 19018702
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.