These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 12836032)

  • 1. Mechanical models for insect locomotion: active muscles and energy losses.
    Schmitt J; Holmes P
    Biol Cybern; 2003 Jul; 89(1):43-55. PubMed ID: 12836032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics and stability of insect locomotion: a hexapedal model for horizontal plane motions.
    Seipel JE; Holmes PJ; Full RJ
    Biol Cybern; 2004 Aug; 91(2):76-90. PubMed ID: 15322851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A hexapedal jointed-leg model for insect locomotion in the horizontal plane.
    Kukillaya RP; Holmes PJ
    Biol Cybern; 2007 Dec; 97(5-6):379-95. PubMed ID: 17926063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics and stability of legged locomotion in the horizontal plane: a test case using insects.
    Schmitt J; Garcia M; Razo RC; Holmes P; Full RJ
    Biol Cybern; 2002 May; 86(5):343-53. PubMed ID: 11984649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A model for insect locomotion in the horizontal plane: feedforward activation of fast muscles, stability, and robustness.
    Kukillaya RP; Holmes P
    J Theor Biol; 2009 Nov; 261(2):210-26. PubMed ID: 19660474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leg recirculation in horizontal plane locomotion.
    Wickramasuriya A; Schmitt J
    Biol Cybern; 2009 Oct; 101(4):247-63. PubMed ID: 19787371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How well can spring-mass-like telescoping leg models fit multi-pedal sagittal-plane locomotion data?
    Srinivasan M; Holmes P
    J Theor Biol; 2008 Nov; 255(1):1-7. PubMed ID: 18671984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuromechanical models for insect locomotion: Stability, maneuverability, and proprioceptive feedback.
    Kukillaya R; Proctor J; Holmes P
    Chaos; 2009 Jun; 19(2):026107. PubMed ID: 19566267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A theory of metabolic costs for bipedal gaits.
    Minetti AE; Alexander RM
    J Theor Biol; 1997 Jun; 186(4):467-76. PubMed ID: 9278722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling posture-dependent leg actuation in sagittal plane locomotion.
    Schmitt J; Clark J
    Bioinspir Biomim; 2009 Dec; 4(4):046005. PubMed ID: 19946148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving horizontal plane locomotion via leg angle control.
    Wickramasuriya A; Schmitt J
    J Theor Biol; 2009 Feb; 256(3):414-27. PubMed ID: 18951907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuromechanical response of musculo-skeletal structures in cockroaches during rapid running on rough terrain.
    Sponberg S; Full RJ
    J Exp Biol; 2008 Feb; 211(Pt 3):433-46. PubMed ID: 18203999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patterns of mechanical energy change in tetrapod gait: pendula, springs and work.
    Biewener AA
    J Exp Zool A Comp Exp Biol; 2006 Nov; 305(11):899-911. PubMed ID: 17029267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contractile behavior of the forelimb digital flexors during steady-state locomotion in horses (Equus caballus): an initial test of muscle architectural hypotheses about in vivo function.
    Butcher MT; Hermanson JW; Ducharme NG; Mitchell LM; Soderholm LV; Bertram JE
    Comp Biochem Physiol A Mol Integr Physiol; 2009 Jan; 152(1):100-14. PubMed ID: 18835360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics and stability of lateral plane locomotion on inclines.
    Schmitt J; Bonnono S
    J Theor Biol; 2009 Dec; 261(4):598-609. PubMed ID: 19703469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ muscle power differs without varying in vitro mechanical properties in two insect leg muscles innervated by the same motor neuron.
    Ahn AN; Meijer K; Full RJ
    J Exp Biol; 2006 Sep; 209(Pt 17):3370-82. PubMed ID: 16916973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical models for insect locomotion: dynamics and stability in the horizontal plane-II. Application.
    Schmitt J; Holmes P
    Biol Cybern; 2000 Dec; 83(6):517-27. PubMed ID: 11130584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maneuvers during legged locomotion.
    Jindrich DL; Qiao M
    Chaos; 2009 Jun; 19(2):026105. PubMed ID: 19566265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Posture, gait and the ecological relevance of locomotor costs and energy-saving mechanisms in tetrapods.
    Reilly SM; McElroy EJ; Biknevicius AR
    Zoology (Jena); 2007; 110(4):271-89. PubMed ID: 17482802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A phase-reduced neuro-mechanical model for insect locomotion: feed-forward stability and proprioceptive feedback.
    Proctor J; Kukillaya RP; Holmes P
    Philos Trans A Math Phys Eng Sci; 2010 Nov; 368(1930):5087-104. PubMed ID: 20921014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.