BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 12836258)

  • 1. Development of chemo-enzymatic process and manufacture of deoxynucleosides.
    Komatsu H; Awano H; Ishibashi H; Ikeda I
    Nucleic Acids Res Suppl; 2001; (1):49-50. PubMed ID: 12836258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-scale manufacturing of all four 2'-deoxynucleosides via novel strategies including a chemo-enzymatic process.
    Komatsu H; Awano H; Tanikawa H; Itou K; Ikeda I
    Nucleosides Nucleotides Nucleic Acids; 2001; 20(4-7):1291-3. PubMed ID: 11563006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of 2-deoxy-beta-D-ribose 1-phosphate, NMR comparison and its enzymatic activity for structural elucidation of synthetic alpha-isomer.
    Komatsu H; Ikeda I
    Nucleosides Nucleotides Nucleic Acids; 2003; 22(5-8):1685-6. PubMed ID: 14565495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alkylation of 2'-deoxynucleosides and DNA by the Premarin metabolite 4-hydroxyequilenin semiquinone radical.
    Shen L; Qiu S; Chen Y; Zhang F; van Breemen RB; Nikolic D; Bolton JL
    Chem Res Toxicol; 1998 Feb; 11(2):94-101. PubMed ID: 9511900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined chemoassay and mass spectrometric approach to study the reactive potential of electrophiles towards deoxynucleosides as model for DNA.
    Schmied-Tobies MI; Paschke H; Reemtsma T
    Chemosphere; 2016 May; 151():263-70. PubMed ID: 26945242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of 2'-deoxyribonucleosides with an identically 2H/13C-labeled sugar residue.
    Oogo Y; Nonaka K; Ono AM; Ono A; Kainosho M
    Nucleic Acids Symp Ser; 1999; (42):123-4. PubMed ID: 10780410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-pot two-step enzymatic coupling of pyrimidine bases to 2-deoxy-D-ribose-5-phosphate. A new strategy in the synthesis of stable isotope labeled deoxynucleosides.
    Ouwerkerk N; Steenweg M; de Ruijter M; Brouwer J; van Boom JH; Lugtenburg J; Raap J
    J Org Chem; 2002 Mar; 67(5):1480-9. PubMed ID: 11871876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acholeplasma laidlawii B-PG9 adenine-specific purine nucleoside phosphorylase that accepts ribose-1-phosphate, deoxyribose-1-phosphate, and xylose-1-phosphate.
    McElwain MC; Williams MV; Pollack JD
    J Bacteriol; 1988 Feb; 170(2):564-7. PubMed ID: 3123458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial production of 2-deoxyribose 5-phosphate from acetaldehyde and triosephosphate for the synthesis of 2'-deoxyribonucleosides.
    Ogawa J; Saito K; Sakai T; Horinouchi N; Kawano T; Matsumoto S; Sasaki M; Mikami Y; Shimizu S
    Biosci Biotechnol Biochem; 2003 Apr; 67(4):933-6. PubMed ID: 12784646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative Analysis of Enzymatic Transglycosylation Using E. coli Nucleoside Phosphorylases: A Synthetic Concept for the Preparation of Purine Modified 2′-Deoxyribonucleosides from Ribonucleosides.
    Drenichev MS; Oslovsky VE; Zenchenko AA; Danilova CV; Varga MA; Esipov RS; Lykoshin DD; Alexeev CS
    Int J Mol Sci; 2022 Mar; 23(5):. PubMed ID: 35269937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-pot microbial synthesis of 2'-deoxyribonucleoside from glucose, acetaldehyde, and a nucleobase.
    Horinouchi N; Ogawa J; Kawano T; Sakai T; Saito K; Matsumoto S; Sasaki M; Mikami Y; Shimizu S
    Biotechnol Lett; 2006 Jun; 28(12):877-81. PubMed ID: 16786272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of malonaldehyde and acetaldehyde from the oxidation of 2'-deoxyribonucleosides.
    Miyake T; Shibamoto T
    J Agric Food Chem; 1999 Jul; 47(7):2782-5. PubMed ID: 10552565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Base pairing of 8-oxoguanosine and 8-oxo-2'-deoxyguanosine with 2'-deoxyadenosine, 2'-deoxycytosine, 2'-deoxyguanosine, and thymidine.
    Gannett PM; Sura TP
    Chem Res Toxicol; 1993; 6(5):690-700. PubMed ID: 8292748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved synthesis of 2'-deoxyadenosine and 5-methyluridine by Escherichia coli using an auto-induction system.
    Xiong J; Zhang W; Su J; Shangguan J; Lin Y; Yang Y; Zhang R; Xie L; Wang H
    World J Microbiol Biotechnol; 2012 Feb; 28(2):721-7. PubMed ID: 22806868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemo-enzymatic syntheses of natural and unnatural 2'-deoxynucleosides.
    Komatsu H; Awano H; Ishibashi H; Oikawa T; Ikeda I; Araki T
    Nucleic Acids Res Suppl; 2003; (3):101-2. PubMed ID: 14510400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic studies of Drosophila melanogaster methylthioadenosine nucleoside phosphorylase.
    Shugart L; Mahoney L; Chastain B
    Int J Biochem; 1981; 13(5):559-64. PubMed ID: 6786932
    [No Abstract]   [Full Text] [Related]  

  • 17. Synthesis of 2',3'-dideoxynucleosides by enzymatic trans-glycosylation.
    Carson DA; Wasson DB
    Biochem Biophys Res Commun; 1988 Sep; 155(2):829-34. PubMed ID: 3262341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymatic synthesis of ribo- and 2'-deoxyribonucleosides from glycofuranosyl phosphates: An approach to facilitate isotopic labeling.
    Zhang W; Turney T; Surjancev I; Serianni AS
    Carbohydr Res; 2017 Sep; 449():125-133. PubMed ID: 28780317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient chemo-enzymatic syntheses of pharmaceutically useful unnatural 2'-deoxynucleosides.
    Komatsu H; Araki T
    Nucleosides Nucleotides Nucleic Acids; 2005; 24(5-7):1127-30. PubMed ID: 16248106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid disappearance of deoxyribose-1-phosphate in platelet derived endothelial cell growth factor/thymidine phosphorylase overexpressing cells.
    de Bruin M; Smid K; Laan AC; Noordhuis P; Fukushima M; Hoekman K; Pinedo HM; Peters GJ
    Biochem Biophys Res Commun; 2003 Feb; 301(3):675-9. PubMed ID: 12565833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.