These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 12836268)

  • 1. Synthesis of small multifunctional molecules having nucleic acid binding property.
    Nakanuma K; Moriguchi T; Suzuki H; Shinozuka K
    Nucleic Acids Res Suppl; 2001; (1):69-70. PubMed ID: 12836268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-selective artificial ribonuclease using pinpoint RNA activation.
    Kuzuya A; Mizoguchi R; Komiyama M
    Nucleic Acids Res Suppl; 2001; (1):131-2. PubMed ID: 12836299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of DNA-intercalator-polyamine multi-conjugate bearing the ability of the sequence-specific RNA hydrolysis.
    Moriguchi T; Ohike T; Shinozuka K
    Nucleic Acids Symp Ser (Oxf); 2006; (50):187-8. PubMed ID: 17150880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. G-specific RNA-cleaving conjugates of short peptides and oligodeoxyribonucleotides.
    Mironova NL; Pyshnyi DV; Stadler DV; Prokudin IV; Boutorine YI; Ivanova EM; Zenkova MA; Gross HJ; Vlassov VV
    J Biomol Struct Dyn; 2006 Jun; 23(6):591-602. PubMed ID: 16615805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial ribonucleases: oligonucleotide-peptide conjugates that cleave RNA at the GpX and PypA phosphodiester bonds.
    Mironova NL; Pyshnyi DV; Ivanova EM; Zenkova MA; Gross GJ; Vlasov VV
    Dokl Biochem Biophys; 2002; 385():196-200. PubMed ID: 12462971
    [No Abstract]   [Full Text] [Related]  

  • 6. Preferred RNA binding sites for a threading intercalator revealed by in vitro evolution.
    Carlson CB; Vuyisich M; Gooch BD; Beal PA
    Chem Biol; 2003 Jul; 10(7):663-72. PubMed ID: 12890540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards artificial ribonucleases: the sequence-specific cleavage of RNA in a duplex.
    Hall J; Hüsken D; Häner R
    Nucleic Acids Res; 1996 Sep; 24(18):3522-6. PubMed ID: 8836177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 15-base acridine-conjugated oligodeoxynucleotide forms triplex DNA with its IL-2R alpha promoter target with greatly improved avidity.
    Klysik J; Kinsey BM; Hua P; Glass GA; Orson FM
    Bioconjug Chem; 1997; 8(3):318-26. PubMed ID: 9177837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [New substances with high specific activity for nucleic acid sequences: oligodeoxynucleotides covalently linked to an intercalating agent].
    Asseline U; Nguyen TT; Hélène C
    C R Seances Acad Sci III; 1983; 297(7):369-72. PubMed ID: 6420010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Covalently attached oligodeoxyribonucleotides induce RNase activity of a short peptide and modulate its base specificity.
    Mironova NL; Pyshnyi DV; Ivanova EM; Zenkova MA; Gross HJ; Vlassov VV
    Nucleic Acids Res; 2004; 32(6):1928-36. PubMed ID: 15047859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linkers designed to intercalate the double helix greatly facilitate DNA alkylation by triplex-forming oligonucleotides carrying a cyclopropapyrroloindole reactive moiety.
    Dempcy RO; Kutyavin IV; Mills AG; Lukhtanov EA; Meyer RB
    Nucleic Acids Res; 1999 Jul; 27(14):2931-7. PubMed ID: 10390536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and synthesis of metal-free artificial ribonucleases.
    Koroleva LS; Serpokrylova IY; Vlassov VV; Silnikov VN
    Protein Pept Lett; 2007; 14(2):151-63. PubMed ID: 17305602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and synthesis of peptide-oligonucleotide conjugates as potential artificial ribonucleases.
    Serpokrylova I; Koroleva L; Svischeva N; Novopashina D; Silnikov V
    Nucleic Acids Symp Ser (Oxf); 2008; (52):529-30. PubMed ID: 18776487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 1H NMR study of the binding of Bis(acridines) to d(AT)5.d(AT)5. 1. Mode of binding.
    Assa-Munt N; Denny WA; Leupin W; Kearns DR
    Biochemistry; 1985 Mar; 24(6):1441-9. PubMed ID: 12096751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Artificial ribonucleases I. Targeted RNA cleavage by 5'-peptidyloligodeoxyribonucleotides containing arginine and leucine residues].
    Pyshny'i DV; Repkova MN; Lokhov SG; Ivanova EM; Ven'iaminova AG; Zarytova VF
    Bioorg Khim; 1997 Jun; 23(6):497-504. PubMed ID: 9265472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular recognition between a new pentacyclic acridinium salt and DNA sequences investigated by optical spectroscopic techniques, proton nuclear magnetic resonance spectroscopy, and molecular modeling.
    Bostock-Smith CE; Giménez-Arnau E; Missailidis S; Laughton CA; Stevens MF; Searle MS
    Biochemistry; 1999 May; 38(21):6723-31. PubMed ID: 10346892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of peptide-acridine mimics of ribonuclease activity.
    Tung CH; Wei Z; Leibowitz MJ; Stein S
    Proc Natl Acad Sci U S A; 1992 Aug; 89(15):7114-8. PubMed ID: 1379732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intercalation interactions between dsDNA and acridine studied by single molecule force spectroscopy.
    Liu C; Jiang Z; Zhang Y; Wang Z; Zhang X; Feng F; Wang S
    Langmuir; 2007 Aug; 23(18):9140-2. PubMed ID: 17676778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and characterization of polyamine-based biomimetic catalysts as artificial ribonuclease.
    Shinozuka K; Nakashima Y; Shimizu K; Sawai H
    Nucleosides Nucleotides Nucleic Acids; 2001; 20(1-2):117-30. PubMed ID: 11303558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The acridine ring selectively intercalated into a DNA helix at various types of abasic sites: double strand formation and photophysical properties.
    Fukui K; Tanaka K
    Nucleic Acids Res; 1996 Oct; 24(20):3962-7. PubMed ID: 8918798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.