These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 12836558)

  • 41. Interaction of transgenic and natural insect resistance mechanisms against Spodoptera littoralis in cotton.
    Hagenbucher S; Eisenring M; Meissle M; Romeis J
    Pest Manag Sci; 2017 Aug; 73(8):1670-1678. PubMed ID: 28019063
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Effect of plantation of transgenic Bt cotton on the amount of rhizospheric soil microorganism and bacterial diversity in the cotton region of Yellow River basin].
    Na RS; Yu H; Yang DL; Zhao JN; Li G; Na BQ; Liu L
    Ying Yong Sheng Tai Xue Bao; 2011 Jan; 22(1):114-20. PubMed ID: 21548297
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China.
    Lu Y; Wu K; Jiang Y; Xia B; Li P; Feng H; Wyckhuys KA; Guo Y
    Science; 2010 May; 328(5982):1151-4. PubMed ID: 20466880
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evaluation of transgenic soybean exhibiting high expression of a synthetic Bacillus thuringiensis cry1A transgene for suppressing lepidopteran population densities and crop injury.
    McPherson RM; MacRae TC
    J Econ Entomol; 2009 Aug; 102(4):1640-8. PubMed ID: 19736779
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A meta-analysis of effects of Bt cotton and maize on nontarget invertebrates.
    Marvier M; McCreedy C; Regetz J; Kareiva P
    Science; 2007 Jun; 316(5830):1475-7. PubMed ID: 17556584
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Assessment of Bt trait purity in different generations of transgenic cottons.
    Singh BP; Sandhu SS; Kalia VK; Gujart GT; Dhillon MK
    Indian J Exp Biol; 2016 Apr; 54(4):237-44. PubMed ID: 27295920
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Safety and advantages of Bacillus thuringiensis-protected plants to control insect pests.
    Betz FS; Hammond BG; Fuchs RL
    Regul Toxicol Pharmacol; 2000 Oct; 32(2):156-73. PubMed ID: 11067772
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The impact of secondary pests on Bacillus thuringiensis (Bt) crops.
    Catarino R; Ceddia G; Areal FJ; Park J
    Plant Biotechnol J; 2015 Jun; 13(5):601-12. PubMed ID: 25832330
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Transgenic crops expressing Bacillus thuringiensis toxins and biological control.
    Romeis J; Meissle M; Bigler F
    Nat Biotechnol; 2006 Jan; 24(1):63-71. PubMed ID: 16404399
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Competitive release and outbreaks of non-target pests associated with transgenic Bt cotton.
    Zeilinger AR; Olson DM; Andow DA
    Ecol Appl; 2016 Jun; 26(4):1047-54. PubMed ID: 27509747
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Ecological fitness of transgenic GAFP cotton and its effects on the field insect community.].
    Luo JY; Zhang S; Zhu XZ; Lu LM; Wang CY; Li CH; Zhang LJ; Wang L; Cui JJ
    Ying Yong Sheng Tai Xue Bao; 2016 Nov; 27(11):3675-3681. PubMed ID: 29696867
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bt-transgenic cotton is more sensitive to CeO₂ nanoparticles than its parental non-transgenic cotton.
    Li X; Gui X; Rui Y; Ji W; Van Nhan L; Yu Z; Peng S
    J Hazard Mater; 2014 Jun; 274():173-80. PubMed ID: 24793293
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Current status of genetic engineering in cotton (Gossypium hirsutum L): an assessment.
    Chakravarthy VS; Reddy TP; Reddy VD; Rao KV
    Crit Rev Biotechnol; 2014 Jun; 34(2):144-60. PubMed ID: 23190258
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Helicoverpa armigera baseline susceptibility to Bacillus thuringiensis Cry toxins and resistance management for Bt cotton in India.
    Gujar GT; Kalia V; Kumari A; Singh BP; Mittal A; Nair R; Mohan M
    J Invertebr Pathol; 2007 Jul; 95(3):214-9. PubMed ID: 17475275
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Field trials to evaluate effects of continuously planted transgenic insect-resistant cottons on soil invertebrates.
    Li X; Liu B; Wang X; Han Z; Cui J; Luo J
    J Environ Monit; 2012 Mar; 14(3):1055-63. PubMed ID: 22334084
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Emergence of minor pests becoming major pests in GE cotton in China: what are the reasons? What are the alternatives practices to this change of status?
    Bergé JB; Ricroch AE
    GM Crops; 2010; 1(4):214-9. PubMed ID: 21844676
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Diversity of arthropod community in transgenic poplar-cotton ecosystems.
    Zhang DJ; Lu ZY; Liu JX; Li CL; Yang MS
    Genet Mol Res; 2015 Dec; 14(4):15713-29. PubMed ID: 26634539
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services.
    Lu Y; Wu K; Jiang Y; Guo Y; Desneux N
    Nature; 2012 Jul; 487(7407):362-5. PubMed ID: 22722864
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Monitoring Bacillus thuringiensis-susceptibility in insect pests that occur in large geographies: how to get the best information when two countries are involved.
    Blanco CA; Perera OP; Boykin D; Abel C; Gore J; Matten SR; Ramírez-Sagahon JC; Terán-Vargas AP
    J Invertebr Pathol; 2007 Jul; 95(3):201-7. PubMed ID: 17499760
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Genetically engineered vegetables expressing proteins from Bacillus thuringiensis for insect resistance: successes, disappointments, challenges and ways to move forward.
    Shelton AM
    GM Crops Food; 2012; 3(3):175-83. PubMed ID: 22538234
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.