These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
85 related articles for article (PubMed ID: 12836977)
1. The effects of ultraviolet-B radiation on the toxicity of fire-fighting chemicals. Calfee RD; Little EE Environ Toxicol Chem; 2003 Jul; 22(7):1525-31. PubMed ID: 12836977 [TBL] [Abstract][Full Text] [Related]
2. Effects of a fire-retardant chemical to fathead minnows in experimental streams. Calfee RD; Little EE Environ Sci Pollut Res Int; 2003; 10(5):296-300. PubMed ID: 14535643 [TBL] [Abstract][Full Text] [Related]
3. Acute toxicity of fire control chemicals to Daphnia magna (Straus) and Selenastrum capricornutum (Printz). McDonald SF; Hamilton SJ; Buhl KJ; Heisinger JF Ecotoxicol Environ Saf; 1996 Feb; 33(1):62-72. PubMed ID: 8744925 [TBL] [Abstract][Full Text] [Related]
4. Behavioral response of young rainbow trout (Oncorhynchus mykiss) to forest fire-retardant chemicals in the laboratory. Wells JB; Little EE; Calfee RD Environ Toxicol Chem; 2004 Mar; 23(3):621-5. PubMed ID: 15285354 [TBL] [Abstract][Full Text] [Related]
5. Toxicity of Wildland Fire Retardants to Rainbow Trout in Short Exposures. Puglis HJ; Iacchetta M Environ Toxicol Chem; 2024 Feb; 43(2):398-404. PubMed ID: 37975555 [TBL] [Abstract][Full Text] [Related]
6. Toxicity of Wildland Fire-Fighting Chemicals in Pulsed Exposures to Rainbow Trout and Fathead Minnows. Puglis HJ; Iacchetta M; Mackey CM Environ Toxicol Chem; 2022 Jul; 41(7):1711-1720. PubMed ID: 35452533 [TBL] [Abstract][Full Text] [Related]
7. Assessment of application-rate dependent effects of a long-term fire retardant chemical (Fire Trol 934) on Typha domingensis germination. Angeler DG; Rodríguez M; Martín S; Moreno JM Environ Int; 2004 May; 30(3):375-81. PubMed ID: 14987869 [TBL] [Abstract][Full Text] [Related]
8. Effect of a long-term fire retardant (Fire Trol 934) on the germination of nine Mediterranean-type shrub species. Cruz A; Serrano M; Navarro E; Luna B; Moreno JM Environ Toxicol; 2005 Dec; 20(6):543-8. PubMed ID: 16302172 [TBL] [Abstract][Full Text] [Related]
9. Toxicity of forest fire retardant chemicals to stream-type chinook salmon undergoing parr-smolt transformation. Dietrich JP; Myers MS; Strickland SA; Van Gaest A; Arkoosh MR Environ Toxicol Chem; 2013 Jan; 32(1):236-47. PubMed ID: 23161484 [TBL] [Abstract][Full Text] [Related]
10. Acute toxicity of firefighting chemical formulations to four life stages of fathead minnow. Gaikowski MP; Hamilton SJ; Buhl KJ; McDonald SF; Summers CH Ecotoxicol Environ Saf; 1996 Aug; 34(3):252-63. PubMed ID: 8812194 [TBL] [Abstract][Full Text] [Related]
11. The effects of solar UV-B radiation on embryonic mortality and development in three boreal anurans (Rana temporaria, Rana arvalis and Bufo bufo). Häkkinen J; Pasanen S; Kukkonen JV Chemosphere; 2001 Jul; 44(3):441-6. PubMed ID: 11459149 [TBL] [Abstract][Full Text] [Related]
12. Post-fire surface water quality: comparison of fire retardant versus wildfire-related effects. Crouch RL; Timmenga HJ; Barber TR; Fuchsman PC Chemosphere; 2006 Feb; 62(6):874-89. PubMed ID: 16023176 [TBL] [Abstract][Full Text] [Related]
13. Community ecotoxicology: invertebrate emergence from Fire Trol 934 contaminated vernal pool and salt marsh sediments under contrasting photoperiod and temperature regimes. Angeler DG; Sánchez B; García G; Moreno JM Aquat Toxicol; 2006 Jun; 78(2):167-75. PubMed ID: 16621061 [TBL] [Abstract][Full Text] [Related]
14. Acute oral toxicities of wildland fire control chemicals to birds. Vyas NB; Spann JW; Hill EF Ecotoxicol Environ Saf; 2009 Mar; 72(3):862-5. PubMed ID: 19038451 [TBL] [Abstract][Full Text] [Related]
15. Ecotoxicity of a brominated flame retardant (tetrabromobisphenol A) and its derivatives to aquatic organisms. Debenest T; Gagné F; Petit AN; André C; Kohli M; Blaise C Comp Biochem Physiol C Toxicol Pharmacol; 2010 Nov; 152(4):407-12. PubMed ID: 20601118 [TBL] [Abstract][Full Text] [Related]
16. Combined exposure to ambient UVB radiation and nitrite negatively affects survival of amphibian early life stages. Macías G; Marco A; Blaustein AR Sci Total Environ; 2007 Oct; 385(1-3):55-65. PubMed ID: 17628639 [TBL] [Abstract][Full Text] [Related]
17. Metabolomic response of striped marsh frog (Limnodynastes peronii) tadpoles exposed to the fire retardant Phos-Chek LC95W. Lanctôt C; Grogan LF; Tunstill K; Melvin SD Comp Biochem Physiol C Toxicol Pharmacol; 2024 Feb; 276():109786. PubMed ID: 37977239 [TBL] [Abstract][Full Text] [Related]
18. Toxicity of PHOS-CHEK LC-95A and 259F fire retardants to ocean- and stream-type Chinook salmon and their potential to recover before seawater entry. Dietrich JP; Van Gaest AL; Strickland SA; Hutchinson GP; Krupkin AB; Arkoosh MR Sci Total Environ; 2014 Aug; 490():610-21. PubMed ID: 24880550 [TBL] [Abstract][Full Text] [Related]
19. Toxicity of cobalt-complexed cyanide to Oncorhynchus mykiss, Daphnia magna, and Ceriodaphnia dubia. Potentiation by ultraviolet radiation and attenuation by dissolved organic carbon and adaptive UV tolerance. Little EE; Calfee RD; Theodorakos P; Brown ZA; Johnson CA Environ Sci Pollut Res Int; 2007 Jul; 14(5):333-7. PubMed ID: 17722768 [TBL] [Abstract][Full Text] [Related]
20. Daphnia emergence: a sensitive indicator of fire-retardant stress in temporary wetlands. Angeler DG; Martín S; Moreno JM Environ Int; 2005 May; 31(4):615-20. PubMed ID: 15788202 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]