BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 12837024)

  • 1. Quantitative trait loci that influence the expression of guarding and stinging behaviors of individual honey bees.
    Arechavaleta-Velasco ME; Hunt GJ; Emore C
    Behav Genet; 2003 May; 33(3):357-64. PubMed ID: 12837024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A genetic analysis of the stinging and guarding behaviors of the honey bee.
    Shorter JR; Arechavaleta-Velasco M; Robles-Rios C; Hunt GJ
    Behav Genet; 2012 Jul; 42(4):663-74. PubMed ID: 22327626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative trait loci for honey bee stinging behavior and body size.
    Hunt GJ; Guzmán-Novoa E; Fondrk MK; Page RE
    Genetics; 1998 Mar; 148(3):1203-13. PubMed ID: 9539435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Confirmation of QTL effects and evidence of genetic dominance of honeybee defensive behavior: results of colony and individual behavioral assays.
    Guzmán-Novoa E; Hunt GJ; Uribe JL; Smith C; Arechavaleta-Velasco ME
    Behav Genet; 2002 Mar; 32(2):95-102. PubMed ID: 12036115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genotype, task specialization, and nest environment influence the stinging response thresholds of individual Africanized and European honeybees to electrical stimulation.
    Uribe-Rubio JL; Guzmán-Novoa E; Vázquez-Peláez CG; Hunt GJ
    Behav Genet; 2008 Jan; 38(1):93-100. PubMed ID: 17975725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flight and fight: a comparative view of the neurophysiology and genetics of honey bee defensive behavior.
    Hunt GJ
    J Insect Physiol; 2007 May; 53(5):399-410. PubMed ID: 17379239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic analysis in the sting-2 quantitative trait locus for defensive behavior in the honey bee, Apis mellifera.
    Lobo NF; Ton LQ; Hill CA; Emore C; Romero-Severson J; Hunt GJ; Collins FH
    Genome Res; 2003 Dec; 13(12):2588-93. PubMed ID: 14656966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Support for the reproductive ground plan hypothesis of social evolution and major QTL for ovary traits of Africanized worker honey bees (Apis mellifera L.).
    Graham AM; Munday MD; Kaftanoglu O; Page RE; Amdam GV; Rueppell O
    BMC Evol Biol; 2011 Apr; 11():95. PubMed ID: 21489230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic regions influencing aggressive behavior in honey bees are defined by colony allele frequencies.
    Avalos A; Fang M; Pan H; Ramirez Lluch A; Lipka AE; Zhao SD; Giray T; Robinson GE; Zhang G; Hudson ME
    Proc Natl Acad Sci U S A; 2020 Jul; 117(29):17135-17141. PubMed ID: 32631983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Defensive behavior of honey bees: organization, genetics, and comparisons with other bees.
    Breed MD; Guzmán-Novoa E; Hunt GJ
    Annu Rev Entomol; 2004; 49():271-98. PubMed ID: 14651465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of honey bee sensitivity to ethanol vapor and its correlation with aggression.
    Ammons AD; Hunt GJ
    Alcohol; 2008 Mar; 42(2):129-36. PubMed ID: 18358992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovery of 3-methyl-2-buten-1-yl acetate, a new alarm component in the sting apparatus of Africanized honeybees.
    Hunt GJ; Wood KV; Guzmán-Novoa E; Lee HD; Rothwell AP; Bonham CC
    J Chem Ecol; 2003 Feb; 29(2):453-63. PubMed ID: 12737269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manipulation of colony environment modulates honey bee aggression and brain gene expression.
    Rittschof CC; Robinson GE
    Genes Brain Behav; 2013 Nov; 12(8):802-11. PubMed ID: 24034579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Smoke Conditions Affect the Release of the Venom Droplet Accompanying Sting Extension in Honey Bees (Hymenoptera: Apidae).
    Gage SL; Ahumada F; Rivera A; Graham H; DeGrandi-Hoffman G
    J Insect Sci; 2018 Jul; 18(4):. PubMed ID: 30060211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The development of an ethanol model using social insects I: behavior studies of the honey bee (Apis mellifera L.).
    Abramson CI; Stone SM; Ortez RA; Luccardi A; Vann KL; Hanig KD; Rice J
    Alcohol Clin Exp Res; 2000 Aug; 24(8):1153-66. PubMed ID: 10968652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling honey yield, defensive and swarming behaviors of Italian honey bees (Apis mellifera ligustica) using linear-threshold approaches.
    Andonov S; Costa C; Uzunov A; Bergomi P; Lourenco D; Misztal I
    BMC Genet; 2019 Oct; 20(1):78. PubMed ID: 31638899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seven suggestive quantitative trait loci influence hygienic behavior of honey bees.
    Lapidge KL; Oldroyd BP; Spivak M
    Naturwissenschaften; 2002 Dec; 89(12):565-8. PubMed ID: 12536279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Defense against territorial intrusion is associated with DNA methylation changes in the honey bee brain.
    Herb BR; Shook MS; Fields CJ; Robinson GE
    BMC Genomics; 2018 Mar; 19(1):216. PubMed ID: 29580210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pleiotropy, epistasis and new QTL: the genetic architecture of honey bee foraging behavior.
    Rüppell O; Pankiw T; Page RE
    J Hered; 2004; 95(6):481-91. PubMed ID: 15475393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic architecture of a hormonal response to gene knockdown in honey bees.
    Ihle KE; Rueppell O; Huang ZY; Wang Y; Fondrk MK; Page RE; Amdam GV
    J Hered; 2015; 106(2):155-65. PubMed ID: 25596612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.