These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 12837108)

  • 1. Reaction of cyclic nitroxides with nitrogen dioxide: the intermediacy of the oxoammonium cations.
    Goldstein S; Samuni A; Russo A
    J Am Chem Soc; 2003 Jul; 125(27):8364-70. PubMed ID: 12837108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactions of nitric oxide, peroxynitrite, and carbonate radicals with nitroxides and their corresponding oxoammonium cations.
    Goldstein S; Samuni A; Merenyi G
    Chem Res Toxicol; 2004 Feb; 17(2):250-7. PubMed ID: 14967013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics and mechanism of the comproportionation reaction between oxoammonium cation and hydroxylamine derived from cyclic nitroxides.
    Israeli A; Patt M; Oron M; Samuni A; Kohen R; Goldstein S
    Free Radic Biol Med; 2005 Feb; 38(3):317-24. PubMed ID: 15629861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of oxoammonium cation in the SOD-mimic activity of cyclic nitroxides.
    Goldstein S; Merenyi G; Russo A; Samuni A
    J Am Chem Soc; 2003 Jan; 125(3):789-95. PubMed ID: 12526680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of the reaction between nitroxide and thiyl radicals: nitroxides as antioxidants in the presence of thiols.
    Goldstein S; Samuni A; Merenyi G
    J Phys Chem A; 2008 Sep; 112(37):8600-5. PubMed ID: 18729428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics and mechanism of peroxyl radical reactions with nitroxides.
    Goldstein S; Samuni A
    J Phys Chem A; 2007 Feb; 111(6):1066-72. PubMed ID: 17286360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of oxidative damage by nitroxide free radicals.
    Dragutan I; Mehlhorn RJ
    Free Radic Res; 2007 Mar; 41(3):303-15. PubMed ID: 17364959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics and mechanism of hydroxyl radical and OH-adduct radical reactions with nitroxides and with their hydroxylamines.
    Samuni A; Goldstein S; Russo A; Mitchell JB; Krishna MC; Neta P
    J Am Chem Soc; 2002 Jul; 124(29):8719-24. PubMed ID: 12121116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitroxides catalytically inhibit nitrite oxidation and heme inactivation induced by H
    Samuni A; Maimon E; Goldstein S
    Free Radic Biol Med; 2016 Dec; 101():491-499. PubMed ID: 27826125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of cyclic nitroxide radicals as HNO scavengers.
    Samuni Y; Samuni U; Goldstein S
    J Inorg Biochem; 2013 Jan; 118():155-61. PubMed ID: 23122928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics and mechanism of *NO2 reacting with various oxidation states of myoglobin.
    Goldstein S; Merenyi G; Samuni A
    J Am Chem Soc; 2004 Dec; 126(48):15694-701. PubMed ID: 15571391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-activity relationship of cyclic nitroxides as SOD mimics and scavengers of nitrogen dioxide and carbonate radicals.
    Goldstein S; Samuni A; Hideg K; Merenyi G
    J Phys Chem A; 2006 Mar; 110(10):3679-85. PubMed ID: 16526651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reaction of the carbonate radical with the spin-trap 5,5-dimethyl-1-pyrroline-N-oxide in chemical and cellular systems: pulse radiolysis, electron paramagnetic resonance, and kinetic-competition studies.
    Alvarez MN; Peluffo G; Folkes L; Wardman P; Radi R
    Free Radic Biol Med; 2007 Dec; 43(11):1523-33. PubMed ID: 17964423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactions of PTIO and carboxy-PTIO with *NO, *NO2, and O2-*.
    Goldstein S; Russo A; Samuni A
    J Biol Chem; 2003 Dec; 278(51):50949-55. PubMed ID: 12954619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of HRP-catalyzed nitrite oxidation by H
    Samuni A; Maimon E; Goldstein S
    Free Radic Biol Med; 2017 Jul; 108():832-839. PubMed ID: 28495446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual activity of nitroxides as pro- and antioxidants: catalysis of copper-mediated DNA breakage and H2O2 dismutation.
    Aronovitch Y; Godinger D; Israeli A; Krishna MC; Samuni A; Goldstein S
    Free Radic Biol Med; 2007 May; 42(9):1317-25. PubMed ID: 17395005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scavenging effects of natural phenols on oxidizing intermediates of peroxynitrite.
    Zhao CY; Shi YM; Yao SD; Jia ZJ; Fan BT; Wang WF; Lin WZ; Lin NY; Zheng RL
    Pharmazie; 2003 Oct; 58(10):742-9. PubMed ID: 14609289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactions of 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulfonate) dianion, ABTS2-, with *OH, (SCN)2*-, and glycine or valine peroxyl radicals.
    Gebicki JL; Maciejewska M
    J Phys Chem A; 2007 Mar; 111(11):2122-7. PubMed ID: 17388305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactivity of 2',7'-dichlorodihydrofluorescein and dihydrorhodamine 123 and their oxidized forms toward carbonate, nitrogen dioxide, and hydroxyl radicals.
    Wrona M; Patel K; Wardman P
    Free Radic Biol Med; 2005 Jan; 38(2):262-70. PubMed ID: 15607909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic studies on the oxidation of nitrite by horseradish peroxidase and lactoperoxidase.
    Gebicka L
    Acta Biochim Pol; 1999; 46(4):919-27. PubMed ID: 10824860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.