These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 12837253)

  • 1. Cluster analysis of structural stage classes to map wildland fuels in a Madrean ecosystem.
    Miller JD; Danzer SR; Watts JM; Stone S; Yool SR
    J Environ Manage; 2003 Jul; 68(3):239-52. PubMed ID: 12837253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regional estimation of current and future forest biomass.
    Mickler RA; Earnhardt TS; Moore JA
    Environ Pollut; 2002; 116 Suppl 1():S7-16. PubMed ID: 11833920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multitemporal lidar captures heterogeneity in fuel loads and consumption on the Kaibab Plateau.
    Bright BC; Hudak AT; McCarley TR; Spannuth A; Sánchez-López N; Ottmar RD; Soja AJ
    Fire Ecol; 2022; 18(1):18. PubMed ID: 36017330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping forest fuels through vegetation phenology: the role of coarse-resolution satellite time-series.
    Bajocco S; Dragoz E; Gitas I; Smiraglia D; Salvati L; Ricotta C
    PLoS One; 2015; 10(3):e0119811. PubMed ID: 25822505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The potential for LiDAR technology to map fire fuel hazard over large areas of Australian forest.
    Price OF; Gordon CE
    J Environ Manage; 2016 Oct; 181():663-673. PubMed ID: 27558828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wildfire frequency varies with the size and shape of fuel types in southeastern France: implications for environmental management.
    Curt T; Borgniet L; Bouillon C
    J Environ Manage; 2013 Mar; 117():150-61. PubMed ID: 23369835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing fuel treatment effectiveness using satellite imagery and spatial statistics.
    Wimberly MC; Cochrane MA; Baer AD; Pabst K
    Ecol Appl; 2009 Sep; 19(6):1377-84. PubMed ID: 19769087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developing Custom Fire Behavior Fuel Models for Mediterranean Wildland-Urban Interfaces in Southern Italy.
    Elia M; Lafortezza R; Lovreglio R; Sanesi G
    Environ Manage; 2015 Sep; 56(3):754-64. PubMed ID: 25962800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Climatic controls on ecosystem resilience: Postfire regeneration in the Cape Floristic Region of South Africa.
    Wilson AM; Latimer AM; Silander JA
    Proc Natl Acad Sci U S A; 2015 Jul; 112(29):9058-63. PubMed ID: 26150521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping regional patterns of large forest fires in Wildland-Urban Interface areas in Europe.
    Modugno S; Balzter H; Cole B; Borrelli P
    J Environ Manage; 2016 May; 172():112-26. PubMed ID: 26922502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Historical Maps from Modern Images: Using Remote Sensing to Model and Map Century-Long Vegetation Change in a Fire-Prone Region.
    Callister KE; Griffioen PA; Avitabile SC; Haslem A; Kelly LT; Kenny SA; Nimmo DG; Farnsworth LM; Taylor RS; Watson SJ; Bennett AF; Clarke MF
    PLoS One; 2016; 11(3):e0150808. PubMed ID: 27029046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of customized fire behavior fuel models for boreal forests of northeastern China.
    Wu ZW; He HS; Chang Y; Liu ZH; Chen HW
    Environ Manage; 2011 Dec; 48(6):1148-57. PubMed ID: 21691875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Landscape development, forest fires, and wilderness management.
    Wright HE
    Science; 1974 Nov; 186(4163):487-95. PubMed ID: 17790369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of remote sensing and geographical information system in mapping forest fire risk zone at Bhadra wildlife sanctuary, India.
    Sowmya SV; Somashekar RK
    J Environ Biol; 2010 Nov; 31(6):969-74. PubMed ID: 21506484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using structure locations as a basis for mapping the wildland urban interface.
    Bar-Massada A; Stewart SI; Hammer RB; Mockrin MH; Radeloff VC
    J Environ Manage; 2013 Oct; 128():540-7. PubMed ID: 23831676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human influence on California fire regimes.
    Syphard AD; Radeloff VC; Keeley JE; Hawbaker TJ; Clayton MK; Stewart SI; Hammer RB
    Ecol Appl; 2007 Jul; 17(5):1388-402. PubMed ID: 17708216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The National Fire and Fire Surrogate study: effects of fuel reduction methods on forest vegetation structure and fuels.
    Schwilk DW; Keeley JE; Knapp EE; McIver J; Bailey JD; Fettig CJ; Fiedler CE; Harrod RJ; Moghaddas JJ; Outcalt KW; Skinner CN; Stephens SL; Waldrop TA; Yaussy DA; Youngblood A
    Ecol Appl; 2009 Mar; 19(2):285-304. PubMed ID: 19323191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fire and vegetation dynamics in high-elevation neotropical montane forests of the Dominican Republic.
    Sherman RE; Martin PH; Fahey TJ; Degloria SD
    Ambio; 2008 Dec; 37(7-8):535-41. PubMed ID: 19205175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An object-based image analysis of pinyon and juniper woodlands treated to reduce fuels.
    Hulet A; Roundy BA; Petersen SL; Jensen RR; Bunting SC
    Environ Manage; 2014 Mar; 53(3):660-71. PubMed ID: 24402578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fuel reduction management practices in riparian areas of the Western USA.
    Stone KR; Pilliod DS; Dwire KA; Rhoades CC; Wollrab SP; Young MK
    Environ Manage; 2010 Jul; 46(1):91-100. PubMed ID: 20499233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.