BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 12837262)

  • 1. Dynamic gene expression during the onset of myoblast differentiation in vitro.
    Delgado I; Huang X; Jones S; Zhang L; Hatcher R; Gao B; Zhang P
    Genomics; 2003 Aug; 82(2):109-21. PubMed ID: 12837262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycogenome expression dynamics during mouse C2C12 myoblast differentiation suggests a sequential reorganization of membrane glycoconjugates.
    Janot M; Audfray A; Loriol C; Germot A; Maftah A; Dupuy F
    BMC Genomics; 2009 Oct; 10():483. PubMed ID: 19843320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The homeobox gene Arx is a novel positive regulator of embryonic myogenesis.
    Biressi S; Messina G; Collombat P; Tagliafico E; Monteverde S; Benedetti L; Cusella De Angelis MG; Mansouri A; Ferrari S; Tajbakhsh S; Broccoli V; Cossu G
    Cell Death Differ; 2008 Jan; 15(1):94-104. PubMed ID: 17932502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of Skeletal Myoblast Differentiation by Drebrin.
    Krauss RS
    Adv Exp Med Biol; 2017; 1006():361-373. PubMed ID: 28865032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of early C2C12 myogenesis identifies stably and differentially expressed transcriptional regulators whose knock-down inhibits myoblast differentiation.
    Rajan S; Chu Pham Dang H; Djambazian H; Zuzan H; Fedyshyn Y; Ketela T; Moffat J; Hudson TJ; Sladek R
    Physiol Genomics; 2012 Feb; 44(2):183-97. PubMed ID: 22147266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptome expression profiles in prenatal pigs in relation to myogenesis.
    Te Pas MF; De Wit AA; Priem J; Cagnazzo M; Davoli R; Russo V; Pool MH
    J Muscle Res Cell Motil; 2005; 26(2-3):157-65. PubMed ID: 15999225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The SMYD3 methyltransferase promotes myogenesis by activating the myogenin regulatory network.
    Codato R; Perichon M; Divol A; Fung E; Sotiropoulos A; Bigot A; Weitzman JB; Medjkane S
    Sci Rep; 2019 Nov; 9(1):17298. PubMed ID: 31754141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TIEG1 negatively controls the myoblast pool indispensable for fusion during myogenic differentiation of C2C12 cells.
    Miyake M; Hayashi S; Iwasaki S; Uchida T; Watanabe K; Ohwada S; Aso H; Yamaguchi T
    J Cell Physiol; 2011 Apr; 226(4):1128-36. PubMed ID: 20945337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of myogenesis by Notch: evidence for multiple pathways.
    Buas MF; Kabak S; Kadesch T
    J Cell Physiol; 2009 Jan; 218(1):84-93. PubMed ID: 18727102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Establishment of myoblast cell line and identification of key genes regulating myoblast differentiation in a marine teleost, Sebastes schlegelii.
    Kong X; Wang X; Li M; Song W; Huang K; Zhang F; Zhang Q; Qi J; He Y
    Gene; 2021 Nov; 802():145869. PubMed ID: 34352298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into interplay between rexinoid signaling and myogenic regulatory factor-associated chromatin state in myogenic differentiation.
    Hamed M; Khilji S; Dixon K; Blais A; Ioshikhes I; Chen J; Li Q
    Nucleic Acids Res; 2017 Nov; 45(19):11236-11248. PubMed ID: 28981706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromatin-wide and transcriptome profiling integration uncovers p38α MAPK as a global regulator of skeletal muscle differentiation.
    Segalés J; Islam AB; Kumar R; Liu QC; Sousa-Victor P; Dilworth FJ; Ballestar E; Perdiguero E; Muñoz-Cánoves P
    Skelet Muscle; 2016; 6():9. PubMed ID: 26981231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of novel pathway regulation during myogenic differentiation.
    Szustakowski JD; Lee JH; Marrese CA; Kosinski PA; Nirmala NR; Kemp DM
    Genomics; 2006 Jan; 87(1):129-38. PubMed ID: 16300922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel RNA-binding activity of MYF5 enhances Ccnd1/Cyclin D1 mRNA translation during myogenesis.
    Panda AC; Abdelmohsen K; Martindale JL; Di Germanio C; Yang X; Grammatikakis I; Noh JH; Zhang Y; Lehrmann E; Dudekula DB; De S; Becker KG; White EJ; Wilson GM; de Cabo R; Gorospe M
    Nucleic Acids Res; 2016 Mar; 44(5):2393-408. PubMed ID: 26819411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ubiquitin-specific protease 4 (USP4) suppresses myoblast differentiation by down regulating MyoD activity in a catalytic-independent manner.
    Yun SI; Kim KK
    Cell Signal; 2017 Jul; 35():48-60. PubMed ID: 28336234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TBP-like protein (TLP) represses myogenesis via inhibition of the myogenin promoter.
    Nakazato A; Maeda R; Ishikawa K; Suzuki H; Tamura TA
    Biochem Biophys Res Commun; 2016 Oct; 479(4):814-819. PubMed ID: 27680312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lrrc75b is a novel negative regulator of C2C12 myogenic differentiation.
    Zhong Y; Zou L; Wang Z; Pan Y; Dai Z; Liu X; Cui L; Zuo C
    Int J Mol Med; 2016 Nov; 38(5):1411-1418. PubMed ID: 27633041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pitx2c overexpression promotes cell proliferation and arrests differentiation in myoblasts.
    Martínez-Fernandez S; Hernández-Torres F; Franco D; Lyons GE; Navarro F; Aránega AE
    Dev Dyn; 2006 Nov; 235(11):2930-9. PubMed ID: 16958127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strong induction of the Tis11B gene in myogenic differentiation.
    Busse M; Schwarzburger M; Berger F; Hacker C; Munz B
    Eur J Cell Biol; 2008 Jan; 87(1):31-8. PubMed ID: 17889962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TEAD transcription factors are required for normal primary myoblast differentiation in vitro and muscle regeneration in vivo.
    Joshi S; Davidson G; Le Gras S; Watanabe S; Braun T; Mengus G; Davidson I
    PLoS Genet; 2017 Feb; 13(2):e1006600. PubMed ID: 28178271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.