These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
287 related articles for article (PubMed ID: 12837508)
1. Microbial surface thermodynamics and applications. Strevett KA; Chen G Res Microbiol; 2003 Jun; 154(5):329-35. PubMed ID: 12837508 [TBL] [Abstract][Full Text] [Related]
2. Physico-chemistry from initial bacterial adhesion to surface-programmed biofilm growth. Carniello V; Peterson BW; van der Mei HC; Busscher HJ Adv Colloid Interface Sci; 2018 Nov; 261():1-14. PubMed ID: 30376953 [TBL] [Abstract][Full Text] [Related]
3. Interpretation of adhesion behaviors between bacteria and modified basalt fiber by surface thermodynamics and extended DLVO theory. Zhang X; Zhou X; Xi H; Sun J; Liang X; Wei J; Xiao X; Liu Z; Li S; Liang Z; Chen Y; Wu Z Colloids Surf B Biointerfaces; 2019 May; 177():454-461. PubMed ID: 30802829 [TBL] [Abstract][Full Text] [Related]
4. Adhesion of nano-sized particles to the surface of bacteria: mechanistic study with the extended DLVO theory. Hwang G; Ahn IS; Mhin BJ; Kim JY Colloids Surf B Biointerfaces; 2012 Sep; 97():138-44. PubMed ID: 22609594 [TBL] [Abstract][Full Text] [Related]
5. Resolving the coupled effects of hydrodynamics and DLVO forces on colloid attachment in porous media. Torkzaban S; Bradford SA; Walker SL Langmuir; 2007 Sep; 23(19):9652-60. PubMed ID: 17705511 [TBL] [Abstract][Full Text] [Related]
6. Analysis of the adhesion of Pseudomonas putida NCIB 9816-4 to a silica gel as a model soil using extended DLVO theory. Hwang G; Lee CH; Ahn IS; Mhin BJ J Hazard Mater; 2010 Jul; 179(1-3):983-8. PubMed ID: 20399555 [TBL] [Abstract][Full Text] [Related]
7. The polymer physics and chemistry of microbial cell attachment and adhesion. Geoghegan M; Andrews JS; Biggs CA; Eboigbodin KE; Elliott DR; Rolfe S; Scholes J; Ojeda JJ; Romero-González ME; Edyvean RG; Swanson L; Rutkaite R; Fernando R; Pen Y; Zhang Z; Banwart SA Faraday Discuss; 2008; 139():85-103; discussion 105-28, 419-20. PubMed ID: 19048992 [TBL] [Abstract][Full Text] [Related]
8. Success and failure of colloidal approaches in adhesion of microorganisms to surfaces. Perni S; Preedy EC; Prokopovich P Adv Colloid Interface Sci; 2014 Apr; 206():265-74. PubMed ID: 24342736 [TBL] [Abstract][Full Text] [Related]
9. Applications of S-layers. Sleytr UB; Bayley H; Sára M; Breitwieser A; Küpcü S; Mader C; Weigert S; Unger FM; Messner P; Jahn-Schmid B; Schuster B; Pum D; Douglas K; Clark NA; Moore JT; Winningham TA; Levy S; Frithsen I; Pankovc J; Beale P; Gillis HP; Choutov DA; Martin KP FEMS Microbiol Rev; 1997 Jun; 20(1-2):151-75. PubMed ID: 9276930 [TBL] [Abstract][Full Text] [Related]
10. Microbial nanoscopy: a closer look at microbial cell surfaces. Dupres V; Alsteens D; Andre G; Dufrêne YF Trends Microbiol; 2010 Sep; 18(9):397-405. PubMed ID: 20630762 [TBL] [Abstract][Full Text] [Related]
11. DLVO, hydrophobic, capillary and hydrodynamic forces acting on bacteria at solid-air-water interfaces: Their relative impact on bacteria deposition mechanisms in unsaturated porous media. Bai H; Cochet N; Pauss A; Lamy E Colloids Surf B Biointerfaces; 2017 Feb; 150():41-49. PubMed ID: 27870993 [TBL] [Abstract][Full Text] [Related]
12. Kinetic adhesion of bacterial cells to sand: cell surface properties and adhesion rate. Jacobs A; Lafolie F; Herry JM; Debroux M Colloids Surf B Biointerfaces; 2007 Sep; 59(1):35-45. PubMed ID: 17537618 [TBL] [Abstract][Full Text] [Related]
13. Adhesion of B. subtilis spores and vegetative cells onto stainless steel--DLVO theories and AFM spectroscopy. Harimawan A; Zhong S; Lim CT; Ting YP J Colloid Interface Sci; 2013 Sep; 405():233-41. PubMed ID: 23777862 [TBL] [Abstract][Full Text] [Related]
14. Adhesion of Sphingomonas sp. GY2B onto montmorillonite: A combination study by thermodynamics and the extended DLVO theory. Ruan B; Wu P; Liu J; Jiang L; Wang H; Qiao J; Zhu N; Dang Z; Luo H; Yi X Colloids Surf B Biointerfaces; 2020 Apr; 192():111085. PubMed ID: 32361501 [TBL] [Abstract][Full Text] [Related]
15. Initial bacterial attachment in slow flowing systems: effects of cell and substrate surface properties. Wang H; Sodagari M; Chen Y; He X; Newby BM; Ju LK Colloids Surf B Biointerfaces; 2011 Oct; 87(2):415-22. PubMed ID: 21715146 [TBL] [Abstract][Full Text] [Related]
16. E. coli interactions, adhesion and transport in alumino-silica clays. Wei H; Yang G; Wang B; Li R; Chen G; Li Z Colloids Surf B Biointerfaces; 2017 Jun; 154():82-88. PubMed ID: 28324690 [TBL] [Abstract][Full Text] [Related]
17. Physical methods for characterization of microbial surfaces. Krekeler C; Ziehr H; Klein J Experientia; 1989 Dec; 45(11-12):1047-55. PubMed ID: 2689202 [TBL] [Abstract][Full Text] [Related]
18. The influence of cell and substratum surface hydrophobicities on microbial attachment. Liu Y; Yang SF; Li Y; Xu H; Qin L; Tay JH J Biotechnol; 2004 Jun; 110(3):251-6. PubMed ID: 15163515 [TBL] [Abstract][Full Text] [Related]
19. Adhesion of bacterial pathogens to soil colloidal particles: influences of cell type, natural organic matter, and solution chemistry. Zhao W; Walker SL; Huang Q; Cai P Water Res; 2014 Apr; 53():35-46. PubMed ID: 24495985 [TBL] [Abstract][Full Text] [Related]
20. Analysis of force interactions between AFM tips and hydrophobic bacteria using DLVO theory. Dorobantu LS; Bhattacharjee S; Foght JM; Gray MR Langmuir; 2009 Jun; 25(12):6968-76. PubMed ID: 19334745 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]