These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Influence of muscle glycogen availability on ERK1/2 and Akt signaling after resistance exercise in human skeletal muscle. Creer A; Gallagher P; Slivka D; Jemiolo B; Fink W; Trappe S J Appl Physiol (1985); 2005 Sep; 99(3):950-6. PubMed ID: 15879168 [TBL] [Abstract][Full Text] [Related]
23. Static stretch increases c-Jun NH2-terminal kinase activity and p38 phosphorylation in rat skeletal muscle. Boppart MD; Hirshman MF; Sakamoto K; Fielding RA; Goodyear LJ Am J Physiol Cell Physiol; 2001 Feb; 280(2):C352-8. PubMed ID: 11208531 [TBL] [Abstract][Full Text] [Related]
24. Contractile C2C12 myotube model for studying exercise-inducible responses in skeletal muscle. Nedachi T; Fujita H; Kanzaki M Am J Physiol Endocrinol Metab; 2008 Nov; 295(5):E1191-204. PubMed ID: 18780777 [TBL] [Abstract][Full Text] [Related]
25. Maximal lengthening contractions induce different signaling responses in the type I and type II fibers of human skeletal muscle. Tannerstedt J; Apró W; Blomstrand E J Appl Physiol (1985); 2009 Apr; 106(4):1412-8. PubMed ID: 19112158 [TBL] [Abstract][Full Text] [Related]
26. Exercise type and muscle fiber specific induction of caveolin-1 expression for insulin sensitivity of skeletal muscle. Oh YS; Kim HJ; Ryu SJ; Cho KA; Park YS; Park H; Kim M; Kim CK; Park SC Exp Mol Med; 2007 Jun; 39(3):395-401. PubMed ID: 17603294 [TBL] [Abstract][Full Text] [Related]
28. Age-related differences in skeletal muscle insulin signaling: the role of stress kinases and heat shock proteins. Gupte AA; Bomhoff GL; Geiger PC J Appl Physiol (1985); 2008 Sep; 105(3):839-48. PubMed ID: 18599680 [TBL] [Abstract][Full Text] [Related]
29. Stimulation of glycogen synthesis by heat shock in L6 skeletal-muscle cells: regulatory role of site-specific phosphorylation of glycogen-associated protein phosphatase 1. Moon B; Duddy N; Ragolia L; Begum N Biochem J; 2003 May; 371(Pt 3):857-66. PubMed ID: 12540292 [TBL] [Abstract][Full Text] [Related]
30. Hyperglycemia inhibits insulin activation of Akt/protein kinase B but not phosphatidylinositol 3-kinase in rat skeletal muscle. Kurowski TG; Lin Y; Luo Z; Tsichlis PN; Buse MG; Heydrick SJ; Ruderman NB Diabetes; 1999 Mar; 48(3):658-63. PubMed ID: 10078574 [TBL] [Abstract][Full Text] [Related]
31. Insulin and isoproterenol differentially regulate mitogen-activated protein kinase-dependent Na(+)-K(+)-2Cl(-) cotransporter activity in skeletal muscle. Gosmanov AR; Thomason DB Diabetes; 2002 Mar; 51(3):615-23. PubMed ID: 11872658 [TBL] [Abstract][Full Text] [Related]
32. Differential regulation of MAP kinase, p70(S6K), and Akt by contraction and insulin in rat skeletal muscle. Sherwood DJ; Dufresne SD; Markuns JF; Cheatham B; Moller DE; Aronson D; Goodyear LJ Am J Physiol; 1999 May; 276(5):E870-8. PubMed ID: 10329981 [TBL] [Abstract][Full Text] [Related]
33. Stent implantation activates Akt in the vessel wall: role of mechanical stretch in vascular smooth muscle cells. Zhou RH; Lee TS; Tsou TC; Rannou F; Li YS; Chien S; Shyy JY Arterioscler Thromb Vasc Biol; 2003 Nov; 23(11):2015-20. PubMed ID: 12969991 [TBL] [Abstract][Full Text] [Related]
34. Involvement of phosphoinositide 3-kinase in insulin stimulation of MAP-kinase and phosphorylation of protein kinase-B in human skeletal muscle: implications for glucose metabolism. Shepherd PR; Nave BT; Rincon J; Haigh RJ; Foulstone E; Proud C; Zierath JR; Siddle K; Wallberg-Henriksson H Diabetologia; 1997 Oct; 40(10):1172-7. PubMed ID: 9349598 [TBL] [Abstract][Full Text] [Related]
35. Divergent effects of exercise on metabolic and mitogenic signaling pathways in human skeletal muscle. Widegren U; Jiang XJ; Krook A; Chibalin AV; Björnholm M; Tally M; Roth RA; Henriksson J; Wallberg-henriksson H; Zierath JR FASEB J; 1998 Oct; 12(13):1379-89. PubMed ID: 9761781 [TBL] [Abstract][Full Text] [Related]
36. Differential activation of mTOR signaling by contractile activity in skeletal muscle. Parkington JD; Siebert AP; LeBrasseur NK; Fielding RA Am J Physiol Regul Integr Comp Physiol; 2003 Nov; 285(5):R1086-90. PubMed ID: 12881204 [TBL] [Abstract][Full Text] [Related]
37. Intracellular signaling specificity in skeletal muscle in response to different modes of exercise. Nader GA; Esser KA J Appl Physiol (1985); 2001 May; 90(5):1936-42. PubMed ID: 11299288 [TBL] [Abstract][Full Text] [Related]
38. Effect of contraction on mitogen-activated protein kinase signal transduction in skeletal muscle. Involvement Of the mitogen- and stress-activated protein kinase 1. Ryder JW; Fahlman R; Wallberg-Henriksson H; Alessi DR; Krook A; Zierath JR J Biol Chem; 2000 Jan; 275(2):1457-62. PubMed ID: 10625698 [TBL] [Abstract][Full Text] [Related]
39. Differential regulation of MAP kinase by contraction and insulin in skeletal muscle: metabolic implications. Wojtaszewski JF; Lynge J; Jakobsen AB; Goodyear LJ; Richter EA Am J Physiol; 1999 Oct; 277(4):E724-32. PubMed ID: 10516133 [TBL] [Abstract][Full Text] [Related]
40. Regulation of dishevelled and beta-catenin in rat skeletal muscle: an alternative exercise-induced GSK-3beta signaling pathway. Aschenbach WG; Ho RC; Sakamoto K; Fujii N; Li Y; Kim YB; Hirshman MF; Goodyear LJ Am J Physiol Endocrinol Metab; 2006 Jul; 291(1):E152-8. PubMed ID: 16478782 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]