These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 1283792)

  • 1. Role of astrocytes in ionic and volume homeostasis in spinal cord during development and injury.
    Syková E; Svoboda J; Simonová Z; Jendelová P
    Prog Brain Res; 1992; 94():47-56. PubMed ID: 1283792
    [No Abstract]   [Full Text] [Related]  

  • 2. Astrocytes express insulin-like growth factor-I (IGF-I) and its binding protein, IGFBP-2, during demyelination induced by experimental autoimmune encephalomyelitis.
    Liu X; Yao DL; Bondy CA; Brenner M; Hudson LD; Zhou J; Webster HD
    Mol Cell Neurosci; 1994 Oct; 5(5):418-30. PubMed ID: 7529631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Demyelination in spinal cord injury and multiple sclerosis: what can we do to enhance functional recovery?
    Waxman SG
    J Neurotrauma; 1992 Mar; 9 Suppl 1():S105-17. PubMed ID: 1588601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of sympathectomy on extracellular potassium ionic activity and blood flow in experimental spinal cord contusion.
    Young W; Koreh I; Yen V; Lindsay A
    Brain Res; 1982 Dec; 253(1-2):115-24. PubMed ID: 6295547
    [No Abstract]   [Full Text] [Related]  

  • 5. Differential distribution of Kir4.1 in spinal cord astrocytes suggests regional differences in K+ homeostasis.
    Olsen ML; Campbell SL; Sontheimer H
    J Neurophysiol; 2007 Aug; 98(2):786-93. PubMed ID: 17581847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deficiency of TREK-1 potassium channel exacerbates secondary injury following spinal cord injury in mice.
    Fang Y; Huang X; Wan Y; Tian H; Tian Y; Wang W; Zhu S; Xie M
    J Neurochem; 2017 Apr; 141(2):236-246. PubMed ID: 28192611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes of extracellular space volume and tortuosity in the spinal cord of Lewis rats with experimental autoimmune encephalomyelitis.
    Simonová Z; Svoboda J; Orkand P; Bernard CC; Lassmann H; Syková E
    Physiol Res; 1996; 45(1):11-22. PubMed ID: 8884919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glial depolarization evokes a larger potassium accumulation around oligodendrocytes than around astrocytes in gray matter of rat spinal cord slices.
    Chvátal A; Anderová M; Ziak D; Syková E
    J Neurosci Res; 1999 Jun; 56(5):493-505. PubMed ID: 10369216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gliosis in the spinal cords of rats with experimental allergic encephalomyelitis: immunostaining of carbonic anhydrase and vimentin in reactive astrocytes.
    Cammer W; Tansey FA; Brosnan CF
    Glia; 1989; 2(4):223-30. PubMed ID: 2527821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression profiles of cholesterol metabolism-related genes are altered during development of experimental autoimmune encephalomyelitis in the rat spinal cord.
    Lavrnja I; Smiljanic K; Savic D; Mladenovic-Djordjevic A; Tesovic K; Kanazir S; Pekovic S
    Sci Rep; 2017 Jun; 7(1):2702. PubMed ID: 28578430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The upregulation of nerve growth factor receptors in reactive astrocytes of rat spinal cord during experimental autoimmune encephalomyelitis.
    Oderfeld-Nowak B; Zaremba M; Micera A; Aloe L
    Neurosci Lett; 2001 Aug; 308(3):165-8. PubMed ID: 11479014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acute allergic encephalomyelitis (EAE) in the rat with special reference to immunologic and demyelinization effects.
    Piliero SJ; Cremonese P
    J Reticuloendothel Soc; 1973 Jul; 14(1):100-18. PubMed ID: 4126715
    [No Abstract]   [Full Text] [Related]  

  • 13. Microglial and astroglial reactions to inflammatory lesions of experimental autoimmune encephalomyelitis in the rat central nervous system.
    Matsumoto Y; Ohmori K; Fujiwara M
    J Neuroimmunol; 1992 Mar; 37(1-2):23-33. PubMed ID: 1372328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spontaneous spinal cord "injury potential" in the rat.
    Goodman RM; Wachs K; Keller S; Black P
    Neurosurgery; 1985 Nov; 17(5):757-9. PubMed ID: 2415868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Embryonic intermediate filaments, nestin and vimentin, expression in the spinal cords of rats with experimental autoimmune encephalomyelitis.
    Shin TK; Lee YD; Sim KB
    J Vet Sci; 2003 Apr; 4(1):9-13. PubMed ID: 12819359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ion channels in spinal cord astrocytes in vitro. III. Modulation of channel expression by coculture with neurons and neuron-conditioned medium.
    Thio CL; Waxman SG; Sontheimer H
    J Neurophysiol; 1993 Mar; 69(3):819-31. PubMed ID: 7681866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracellular calcium ionic activity in experimental spinal cord contusion.
    Young W; Yen V; Blight A
    Brain Res; 1982 Dec; 253(1-2):105-13. PubMed ID: 6295546
    [No Abstract]   [Full Text] [Related]  

  • 18. Immunohistochemical study of flotillin-1 in the spinal cord of Lewis rats with experimental autoimmune encephalomyelitis.
    Kim H; Ahn M; Moon C; Matsumoto Y; Sung Koh C; Shin T
    Brain Res; 2006 Oct; 1114(1):204-11. PubMed ID: 16919610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of osteopontin and its ligand, CD44, in the spinal cords of Lewis rats with experimental autoimmune encephalomyelitis.
    Kim MD; Cho HJ; Shin T
    J Neuroimmunol; 2004 Jun; 151(1-2):78-84. PubMed ID: 15145606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pathology of the spinal cord.
    Hughes JT
    Major Probl Pathol; 1978; 6():1-257. PubMed ID: 364198
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.