These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 12838037)

  • 1. The effect of amphetamine on Kamin blocking and overshadowing.
    O'Tuathaigh CM; Salum C; Young AM; Pickering AD; Joseph MH; Moran PM
    Behav Pharmacol; 2003 Jul; 14(4):315-22. PubMed ID: 12838037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of sulpiride on amphetamine-induced disruption of overshadowing in the rat.
    O'Tuathaigh CP; Moran PM
    Prog Neuropsychopharmacol Biol Psychiatry; 2004 Dec; 28(8):1249-53. PubMed ID: 15588750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for dopamine D(1) receptor involvement in the stimulus selection task: overshadowing in the rat.
    O'Tuathaigh CM; Moran PM
    Psychopharmacology (Berl); 2002 Jul; 162(3):225-31. PubMed ID: 12122479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Appetitive overshadowing is disrupted by systemic amphetamine but not by electrolytic lesions to the nucleus accumbens shell.
    Horsley RR; Moran PM; Cassaday HJ
    J Psychopharmacol; 2008 Mar; 22(2):172-81. PubMed ID: 18208926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amphetamine-induced disruption of latent inhibition depends on the nature of the stimulus.
    Weiner I; Bernasconi E; Broersen LM; Feldon J
    Behav Pharmacol; 1997 Oct; 8(5):442-57. PubMed ID: 9832983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A sensitizing regimen of amphetamine that disrupts attentional set-shifting does not disrupt working or long-term memory.
    Featherstone RE; Rizos Z; Kapur S; Fletcher PJ
    Behav Brain Res; 2008 May; 189(1):170-9. PubMed ID: 18299157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disruption of the US pre-exposure effect and latent inhibition in two-way active avoidance by systemic amphetamine in C57BL/6 mice.
    Chang T; Meyer U; Feldon J; Yee BK
    Psychopharmacology (Berl); 2007 Apr; 191(2):211-21. PubMed ID: 17180617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dopamine manipulations limited to preexposure are sufficient to modulate latent inhibition.
    Bethus I; Muscat R; Goodall G
    Behav Neurosci; 2006 Jun; 120(3):554-62. PubMed ID: 16768607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kamin blocking is not disrupted by amphetamine in human subjects.
    Gray NS; Pickering AD; Gray JA; Jones SH; Abrahams S; Hemsley DR
    J Psychopharmacol; 1997; 11(4):301-11. PubMed ID: 9443517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amphetamine effects in appetitive acquisition depend on the modality of the stimulus rather than its relative validity.
    Horsley RR; Cassaday HJ
    Prog Neuropsychopharmacol Biol Psychiatry; 2008 May; 32(4):1057-63. PubMed ID: 18406505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disruption of latent inhibition to a contextual stimulus with systemic amphetamine.
    Norman C; Cassaday HJ
    Neurobiol Learn Mem; 2004 Jul; 82(1):61-4. PubMed ID: 15183172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amphetamine decreases behavioral inhibition by stimulation of dopamine D2, but not D3, receptors.
    van Gaalen MM; Unger L; Jongen-Rêlo AL; Schoemaker H; Gross G
    Behav Pharmacol; 2009 Sep; 20(5-6):484-91. PubMed ID: 19696659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential effects of calcineurin inhibition and protein kinase A activation on nucleus accumbens amphetamine-produced conditioned place preference in rats.
    Gerdjikov TV; Beninger RJ
    Eur J Neurosci; 2005 Aug; 22(3):697-705. PubMed ID: 16101751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Netrin-1 receptor-deficient mice show enhanced mesocortical dopamine transmission and blunted behavioural responses to amphetamine.
    Grant A; Hoops D; Labelle-Dumais C; Prévost M; Rajabi H; Kolb B; Stewart J; Arvanitogiannis A; Flores C
    Eur J Neurosci; 2007 Dec; 26(11):3215-28. PubMed ID: 18005074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Caffeine induces differential cross tolerance to the amphetamine-like discriminative stimulus effects of dopaminergic agonists.
    Jain R; Holtzman SG
    Brain Res Bull; 2005 May; 65(5):415-21. PubMed ID: 15833596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ABA chronic dosing of D-amphetamine produces differential drug effects in two variants of a temporal discrimination procedure in pigeons.
    McClure EA; Saulsgiver KA; Wynne CD
    Behav Pharmacol; 2009 Dec; 20(8):705-19. PubMed ID: 19901824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. D-Amphetamine remediates attentional performance in rats with dorsal prefrontal lesions.
    Chudasama Y; Nathwani F; Robbins TW
    Behav Brain Res; 2005 Mar; 158(1):97-107. PubMed ID: 15680198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early maternal separation and sex differences in the aversive effects of amphetamine in adult rats.
    Roma PG; Davis CM; Kohut SJ; Huntsberry ME; Riley AL
    Physiol Behav; 2008 Mar; 93(4-5):897-904. PubMed ID: 18230402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methylphenidate can reduce selectivity in associative learning in an aversive trace conditioning task.
    Horsley RR; Cassaday HJ
    J Psychopharmacol; 2007 Jul; 21(5):492-500. PubMed ID: 16891340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Similar effects of amphetamine and methylphenidate on the performance of complex operant tasks in rats.
    Mayorga AJ; Popke EJ; Fogle CM; Paule MG
    Behav Brain Res; 2000 Apr; 109(1):59-68. PubMed ID: 10699658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.