These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 12839778)
1. Thermal inactivation of nonproteolytic Clostridium botulinum type E spores in model fish media and in vacuum-packaged hot-smoked fish products. Lindström M; Nevas M; Hielm S; Lähteenmäki L; Peck MW; Korkeala H Appl Environ Microbiol; 2003 Jul; 69(7):4029-36. PubMed ID: 12839778 [TBL] [Abstract][Full Text] [Related]
2. Control of nonproteolytic Clostridium botulinum types B and E in crab analogs by combinations of heat pasteurization and water phase salt. Peterson ME; Paranjpye RN; Poysky FT; Pelroy GA; Eklund MW J Food Prot; 2002 Jan; 65(1):130-9. PubMed ID: 11808784 [TBL] [Abstract][Full Text] [Related]
3. Inhibition of growth of nonproteolytic Clostridium botulinum type B in sous vide cooked meat products is achieved by using thermal processing but not nisin. Lindström M; Mokkila M; Skyttä E; Hyytiä-Trees E; Lähteenmäki L; Hielm S; Ahvenainen R; Korkeala H J Food Prot; 2001 Jun; 64(6):838-44. PubMed ID: 11403135 [TBL] [Abstract][Full Text] [Related]
4. Interrelationship of heat and relative humidity in the destruction of Clostridium botulinum type E spores on whitefish chubs. Pace PJ; Krumbiegel ER; Wisniewski HJ Appl Microbiol; 1972 Apr; 23(4):750-7. PubMed ID: 4553143 [TBL] [Abstract][Full Text] [Related]
5. Type E botulism associated with vacuum-packaged hot-smoked whitefish. Korkeala H; Stengel G; Hyytiä E; Vogelsang B; Bohl A; Wihlman H; Pakkala P; Hielm S Int J Food Microbiol; 1998 Aug; 43(1-2):1-5. PubMed ID: 9761332 [TBL] [Abstract][Full Text] [Related]
6. Effect of packaging systems and pressure fluids on inactivation of Clostridium botulinum spores by combined high pressure and thermal processing. Patazca E; Morrissey TR; Loeza V; Reddy NR; Skinner GE; Larkin JW J Food Prot; 2013 Mar; 76(3):448-55. PubMed ID: 23462082 [TBL] [Abstract][Full Text] [Related]
7. Bacteria associated with processed crawfish and potential toxin production by Clostridium botulinum type E in vacuum-packaged and aerobically packaged crawfish tails. Lyon WJ; Reddmann CS J Food Prot; 2000 Dec; 63(12):1687-96. PubMed ID: 11131892 [TBL] [Abstract][Full Text] [Related]
8. Effect of heat treatment on survival of, and growth from, spores of nonproteolytic Clostridium botulinum at refrigeration temperatures. Peck MW; Lund BM; Fairbairn DA; Kaspersson AS; Undeland PC Appl Environ Microbiol; 1995 May; 61(5):1780-5. PubMed ID: 7646016 [TBL] [Abstract][Full Text] [Related]
9. Inhibitory effect of combinations of heat treatment, pH, and sodium chloride on a growth from spores of nonproteolytic Clostridium botulinum at refrigeration temperature. Graham AF; Mason DR; Peck MW Appl Environ Microbiol; 1996 Jul; 62(7):2664-8. PubMed ID: 8779606 [TBL] [Abstract][Full Text] [Related]
10. Feasibility of a Heat-Pasteurization Process for the Inactivation of Nonproteolytic Clostridium botulinum types B and E in Vacuum-Packaged, Hot-Process (Smoked) Fish. Eklund MW; Peterson ME; Paranjpye R; Pelroy GA J Food Prot; 1988 Sep; 51(9):720-726. PubMed ID: 30991563 [TBL] [Abstract][Full Text] [Related]
11. Effect of High Pressures in Combination with Temperature on the Inactivation of Spores of Nonproteolytic Clostridium botulinum Types B and F. Skinner GE; Morrissey TR; Patazca E; Loeza V; Halik LA; Schill KM; Reddy NR J Food Prot; 2018 Feb; 81(2):261-271. PubMed ID: 29360398 [TBL] [Abstract][Full Text] [Related]
12. Effects of modified atmosphere packaging on toxin production by Clostridium botulinum in raw aquacultured summer flounder fillets (Paralichthys dentatus). Arritt FM; Eifert JD; Jahncke ML; Pierson MD; Williams RC J Food Prot; 2007 May; 70(5):1159-64. PubMed ID: 17536674 [TBL] [Abstract][Full Text] [Related]
13. Growth from spores of nonproteolytic Clostridium botulinum in heat-treated vegetable juice. Stringer SC; Haque N; Peck MW Appl Environ Microbiol; 1999 May; 65(5):2136-42. PubMed ID: 10224012 [TBL] [Abstract][Full Text] [Related]
14. A predictive model that describes the effect of prolonged heating at 70 to 90 degrees C and subsequent incubation at refrigeration temperatures on growth from spores and toxigenesis by nonproteolytic Clostridium botulinum in the presence of lysozyme. Fernández PS; Peck MW Appl Environ Microbiol; 1999 Aug; 65(8):3449-57. PubMed ID: 10427033 [TBL] [Abstract][Full Text] [Related]
15. Predicted and observed growth and toxigenesis by Clostridium botulinum type E in vacuum-packaged fishery product challenge tests. Hyytiä E; Hielm S; Mokkila M; Kinnunen A; Korkeala H Int J Food Microbiol; 1999 Mar; 47(3):161-9. PubMed ID: 10359486 [TBL] [Abstract][Full Text] [Related]
16. The occurrence of Clostridium botulinum type E in Finnish trout farms and the prevention of toxin formation in fresh-salted vacuum-packed trout fillets. Ala-Huikku K; Nurmi E; Pajulahti H; Raevuori M Nord Vet Med; 1977 Sep; 29(9):386-91. PubMed ID: 333383 [TBL] [Abstract][Full Text] [Related]
17. Thermal Resistance of Nonproteolytic Type B and Type E Clostridium botulinum Spores in Phosphate Buffer and Turkey Slurry Juneja VK; Eblen BS; Marmer BS; Williams AC; Palumbo SA; Miller AJ J Food Prot; 1995 Jul; 58(7):758-763. PubMed ID: 31137328 [TBL] [Abstract][Full Text] [Related]
18. Effect of media, additives, and incubation conditions on the recovery of high pressure and heat-injured Clostridium botulinum spores. Reddy NR; Tetzloff RC; Skinner GE Food Microbiol; 2010 Aug; 27(5):613-7. PubMed ID: 20510779 [TBL] [Abstract][Full Text] [Related]
20. Growth and Production of Toxin of Clostridium botulinum Type E in Rainbow Trout under Various Storage Conditions. Garren DM; Harrison MA; Huang YW J Food Prot; 1995 Aug; 58(8):863-866. PubMed ID: 31137397 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]