BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 12839781)

  • 21. Transglycosidase activity of Bifidobacterium adolescentis DSM 20083 alpha-galactosidase.
    Van Laere KM; Hartemink R; Beldman G; Pitson S; Dijkema C; Schols HA; Voragen AG
    Appl Microbiol Biotechnol; 1999 Nov; 52(5):681-8. PubMed ID: 10570815
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sequence, organization, transcription and regulation of lactose and galactose operons in Lactobacillus rhamnosus TCELL-1.
    Tsai YK; Lin TH
    J Appl Microbiol; 2006 Mar; 100(3):446-59. PubMed ID: 16478484
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure and expression of the Lactococcus lactis gene for phospho-beta-galactosidase (lacG) in Escherichia coli and L. lactis.
    De Vos WM; Gasson MJ
    J Gen Microbiol; 1989 Jul; 135(7):1833-46. PubMed ID: 2515252
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genetic localization and regulation of the maltose phosphorylase gene, malP, in Lactococcus lactis.
    Nilsson U; Rådström P
    Microbiology (Reading); 2001 Jun; 147(Pt 6):1565-1573. PubMed ID: 11390687
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nucleotide sequences and operon structure of plasmid-borne genes mediating uptake and utilization of raffinose in Escherichia coli.
    Aslanidis C; Schmid K; Schmitt R
    J Bacteriol; 1989 Dec; 171(12):6753-63. PubMed ID: 2556373
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The extent of co-metabolism of glucose and galactose by Lactococcus lactis changes with the expression of the lacSZ operon from Streptococcus thermophilus.
    Solem C; Koebmann B; Jensen PR
    Biotechnol Appl Biochem; 2008 May; 50(Pt 1):35-40. PubMed ID: 17822381
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of two new glycosyl hydrolases from the lactic acid bacterium Carnobacterium piscicola strain BA.
    Coombs J; Brenchley JE
    Appl Environ Microbiol; 2001 Nov; 67(11):5094-9. PubMed ID: 11679331
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A transcriptional activator, homologous to the Bacillus subtilis PurR repressor, is required for expression of purine biosynthetic genes in Lactococcus lactis.
    Kilstrup M; Martinussen J
    J Bacteriol; 1998 Aug; 180(15):3907-16. PubMed ID: 9683488
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biosynthesis of Nondigestible Galactose-Containing Hetero-oligosaccharides by
    Delgado-Fernandez P; de Las Rivas B; Muñoz R; Jimeno ML; Doyagüez EG; Corzo N; Moreno FJ
    J Agric Food Chem; 2021 Jan; 69(3):955-965. PubMed ID: 33434031
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multiple regulator gene control of the galactose operon in Escherichia coli K-12.
    Hua SS; Markovitz A
    J Bacteriol; 1972 Jun; 110(3):1089-99. PubMed ID: 4555404
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isolation and Identification of an α-Galactosidase-Producing
    Zhao Y; Zhou J; Dai S; Liu X; Zhang X
    Molecules; 2022 Sep; 27(18):. PubMed ID: 36144675
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differential proteome and cellular adhesion analyses of the probiotic bacterium Lactobacillus acidophilus NCFM grown on raffinose - an emerging prebiotic.
    Celebioglu HU; Ejby M; Majumder A; Købler C; Goh YJ; Thorsen K; Schmidt B; O'Flaherty S; Abou Hachem M; Lahtinen SJ; Jacobsen S; Klaenhammer TR; Brix S; Mølhave K; Svensson B
    Proteomics; 2016 May; 16(9):1361-75. PubMed ID: 26959526
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heterologous expression of lactose- and galactose-utilizing pathways from lactic acid bacteria in Corynebacterium glutamicum for production of lysine in whey.
    Barrett E; Stanton C; Zelder O; Fitzgerald G; Ross RP
    Appl Environ Microbiol; 2004 May; 70(5):2861-6. PubMed ID: 15128544
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel protease-resistant alpha-galactosidase with high hydrolytic activity from Gibberella sp. F75: gene cloning, expression, and enzymatic characterization.
    Cao Y; Wang Y; Meng K; Bai Y; Shi P; Luo H; Yang P; Zhou Z; Zhang Z; Yao B
    Appl Microbiol Biotechnol; 2009 Jul; 83(5):875-84. PubMed ID: 19288093
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Physiological function of the maltose operon regulator, MalR, in Lactococcus lactis.
    Andersson U; Rådström P
    BMC Microbiol; 2002 Sep; 2():28. PubMed ID: 12296976
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular analysis of the lac operon encoding the binding-protein-dependent lactose transport system and beta-galactosidase in Agrobacterium radiobacter.
    Williams SG; Greenwood JA; Jones CW
    Mol Microbiol; 1992 Jul; 6(13):1755-68. PubMed ID: 1630315
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Conditions of formation, purification, and characterization of an alpha-galactosidase of Trichoderma reesei RUT C-30.
    Zeilinger S; Kristufek D; Arisan-Atac I; Hodits R; Kubicek CP
    Appl Environ Microbiol; 1993 May; 59(5):1347-53. PubMed ID: 8390816
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The non-inducible nature of super-repressors of the gal operon in Escherichia coli.
    Zhou YN; Chatterjee S; Roy S; Adhya S
    J Mol Biol; 1995 Oct; 253(3):414-25. PubMed ID: 7473724
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation of galactose metabolism through the HisK:GalR two-component system in Thermoanaerobacter tengcongensis.
    Qian Z; Wang Q; Tong W; Zhou C; Wang Q; Liu S
    J Bacteriol; 2010 Sep; 192(17):4311-6. PubMed ID: 20581213
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of the promoter regions involved in galactose- and nisin-mediated induction of the nisA gene in Lactococcus lactis ATCC 11454.
    Chandrapati S; O'Sullivan DJ
    Mol Microbiol; 2002 Oct; 46(2):467-77. PubMed ID: 12406222
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.