BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 12839786)

  • 1. Optimization of a reusable hollow-fiber ultrafilter for simultaneous concentration of enteric bacteria, protozoa, and viruses from water.
    Morales-Morales HA; Vidal G; Olszewski J; Rock CM; Dasgupta D; Oshima KH; Smith GB
    Appl Environ Microbiol; 2003 Jul; 69(7):4098-102. PubMed ID: 12839786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dead-end hollow-fiber ultrafiltration for recovery of diverse microbes from water.
    Smith CM; Hill VR
    Appl Environ Microbiol; 2009 Aug; 75(16):5284-9. PubMed ID: 19561183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hollow-fiber ultrafiltration of Cryptosporidium parvum oocysts from a wide variety of 10-L surface water samples.
    Kuhn RC; Oshima KH
    Can J Microbiol; 2002 Jun; 48(6):542-9. PubMed ID: 12166681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation and optimization of a reusable hollow fiber ultrafilter as a first step in concentrating Cryptosporidium parvum oocysts from water.
    Kuhn RC; Oshima KH
    Water Res; 2001 Aug; 35(11):2779-83. PubMed ID: 11456179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a rapid method for simultaneous recovery of diverse microbes in drinking water by ultrafiltration with sodium polyphosphate and surfactants.
    Hill VR; Polaczyk AL; Hahn D; Narayanan J; Cromeans TL; Roberts JM; Amburgey JE
    Appl Environ Microbiol; 2005 Nov; 71(11):6878-84. PubMed ID: 16269722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hollow-fiber ultrafiltration for simultaneous recovery of viruses, bacteria and parasites from reclaimed water.
    Liu P; Hill VR; Hahn D; Johnson TB; Pan Y; Jothikumar N; Moe CL
    J Microbiol Methods; 2012 Jan; 88(1):155-61. PubMed ID: 22108496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concentration and detection of cryptosporidium oocysts in surface water samples by method 1622 using ultrafiltration and capsule filtration.
    Simmons OD; Sobsey MD; Heaney CD; Schaefer FW; Francy DS
    Appl Environ Microbiol; 2001 Mar; 67(3):1123-7. PubMed ID: 11229901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multistate evaluation of an ultrafiltration-based procedure for simultaneous recovery of enteric microbes in 100-liter tap water samples.
    Hill VR; Kahler AM; Jothikumar N; Johnson TB; Hahn D; Cromeans TL
    Appl Environ Microbiol; 2007 Jul; 73(13):4218-25. PubMed ID: 17483281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recovery of diverse microbes in high turbidity surface water samples using dead-end ultrafiltration.
    Mull B; Hill VR
    J Microbiol Methods; 2012 Dec; 91(3):429-33. PubMed ID: 23064261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrafiltration-based techniques for rapid and simultaneous concentration of multiple microbe classes from 100-L tap water samples.
    Polaczyk AL; Narayanan J; Cromeans TL; Hahn D; Roberts JM; Amburgey JE; Hill VR
    J Microbiol Methods; 2008 May; 73(2):92-9. PubMed ID: 18395278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of 1MDS electropositive microfilters for simultaneous recovery of multiple microbe classes from tap water.
    Polaczyk AL; Roberts JM; Hill VR
    J Microbiol Methods; 2007 Feb; 68(2):260-6. PubMed ID: 17027108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of an Ultrafiltration-Based Procedure for Simultaneous Recovery of Diverse Microbes in Source Waters.
    Kahler AM; Johnson TB; Hahn D; Narayanan J; Derado G; Hill VR
    Water (Basel); 2015 Mar; 7(3):1202-1216. PubMed ID: 26530003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of hollow-fiber ultrafiltration primary concentration of pathogens and secondary concentration of viruses from water.
    Rhodes ER; Hamilton DW; See MJ; Wymer L
    J Virol Methods; 2011 Sep; 176(1-2):38-45. PubMed ID: 21664379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using ultrafiltration to concentrate and detect Bacillus anthracis, Bacillus atrophaeus subspecies globigii, and Cryptosporidium parvum in 100-liter water samples.
    Lindquist HD; Harris S; Lucas S; Hartzel M; Riner D; Rochele P; Deleon R
    J Microbiol Methods; 2007 Sep; 70(3):484-92. PubMed ID: 17669525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal effect of the water purifier for home use against Cryptosporidium parvum oocysts.
    Matsui T; Kajima J; Fujino T
    J Vet Med Sci; 2004 Aug; 66(8):941-3. PubMed ID: 15353844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of five membrane filtration methods for recovery of Cryptosporidium and Giardia isolates from water samples.
    Wohlsen T; Bates J; Gray B; Katouli M
    Appl Environ Microbiol; 2004 Apr; 70(4):2318-22. PubMed ID: 15066827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of ultrafiltration cartridges for a water sampling apparatus.
    Holowecky PM; James RR; Lorch DP; Straka SE; Lindquist HD
    J Appl Microbiol; 2009 Mar; 106(3):738-47. PubMed ID: 19191977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An evaluation of methods for the simultaneous detection of Cryptosporidium oocysts and Giardia cysts from water.
    Shepherd KM; Wyn-Jones AP
    Appl Environ Microbiol; 1996 Apr; 62(4):1317-22. PubMed ID: 8919791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of hollow-fiber ultrafiltration to the USEPA VIRADEL technique and USEPA method 1623.
    Hill VR; Polaczyk AL; Kahler AM; Cromeans TL; Hahn D; Amburgey JE
    J Environ Qual; 2009; 38(2):822-5. PubMed ID: 19244504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of methods for the concentration of Cryptosporidium oocysts and Giardia cysts from raw waters.
    Ferguson C; Kaucner C; Krogh M; Deere D; Warnecke M
    Can J Microbiol; 2004 Sep; 50(9):675-82. PubMed ID: 15644920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.