These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 12839792)

  • 1. A modified Saccharomyces cerevisiae strain that consumes L-Arabinose and produces ethanol.
    Becker J; Boles E
    Appl Environ Microbiol; 2003 Jul; 69(7):4144-50. PubMed ID: 12839792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Codon-optimized bacterial genes improve L-Arabinose fermentation in recombinant Saccharomyces cerevisiae.
    Wiedemann B; Boles E
    Appl Environ Microbiol; 2008 Apr; 74(7):2043-50. PubMed ID: 18263741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose.
    Wisselink HW; Toirkens MJ; del Rosario Franco Berriel M; Winkler AA; van Dijken JP; Pronk JT; van Maris AJ
    Appl Environ Microbiol; 2007 Aug; 73(15):4881-91. PubMed ID: 17545317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-scale consequences of cofactor balancing in engineered pentose utilization pathways in Saccharomyces cerevisiae.
    Ghosh A; Zhao H; Price ND
    PLoS One; 2011; 6(11):e27316. PubMed ID: 22076150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing ethanol yields through d-xylose and l-arabinose co-fermentation after construction of a novel high efficient l-arabinose-fermenting Saccharomyces cerevisiae strain.
    Caballero A; Ramos JL
    Microbiology (Reading); 2017 Apr; 163(4):442-452. PubMed ID: 28443812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional Analysis of Two l-Arabinose Transporters from Filamentous Fungi Reveals Promising Characteristics for Improved Pentose Utilization in Saccharomyces cerevisiae.
    Li J; Xu J; Cai P; Wang B; Ma Y; Benz JP; Tian C
    Appl Environ Microbiol; 2015 Jun; 81(12):4062-70. PubMed ID: 25841015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Establishment of L-arabinose fermentation in glucose/xylose co-fermenting recombinant Saccharomyces cerevisiae 424A(LNH-ST) by genetic engineering.
    Bera AK; Sedlak M; Khan A; Ho NW
    Appl Microbiol Biotechnol; 2010 Aug; 87(5):1803-11. PubMed ID: 20449743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic Engineering for Improved Fermentation of L-Arabinose.
    Ye S; Kim JW; Kim SR
    J Microbiol Biotechnol; 2019 Mar; 29(3):339-346. PubMed ID: 30786700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of L-arabinose fermentation by modifying the metabolic pathway and transport in Saccharomyces cerevisiae.
    Wang C; Shen Y; Zhang Y; Suo F; Hou J; Bao X
    Biomed Res Int; 2013; 2013():461204. PubMed ID: 24195072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deletion of PHO13 improves aerobic L-arabinose fermentation in engineered Saccharomyces cerevisiae.
    Ye S; Jeong D; Shon JC; Liu KH; Kim KH; Shin M; Kim SR
    J Ind Microbiol Biotechnol; 2019 Dec; 46(12):1725-1731. PubMed ID: 31501960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae.
    Verho R; Londesborough J; Penttilä M; Richard P
    Appl Environ Microbiol; 2003 Oct; 69(10):5892-7. PubMed ID: 14532041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stress-related challenges in pentose fermentation to ethanol by the yeast Saccharomyces cerevisiae.
    Almeida JR; Runquist D; Sànchez i Nogué V; Lidén G; Gorwa-Grauslund MF
    Biotechnol J; 2011 Mar; 6(3):286-99. PubMed ID: 21305697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of an arabinose-fermenting Zymomonas mobilis strain by metabolic pathway engineering.
    Deanda K; Zhang M; Eddy C; Picataggio S
    Appl Environ Microbiol; 1996 Dec; 62(12):4465-70. PubMed ID: 8953718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel strategies to improve co-fermentation of pentoses with D-glucose by recombinant yeast strains in lignocellulosic hydrolysates.
    Oreb M; Dietz H; Farwick A; Boles E
    Bioengineered; 2012; 3(6):347-51. PubMed ID: 22892590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Progress in research of pentose transporters and C6/C5 co-metabolic strains in Saccharomyces cerevisiae].
    Wang C; Li H; Xu L; Shen Y; Hou J; Bao X
    Sheng Wu Gong Cheng Xue Bao; 2018 Oct; 34(10):1543-1555. PubMed ID: 30394022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coutilization of D-Glucose, D-Xylose, and L-Arabinose in
    Wang C; Zhao J; Qiu C; Wang S; Shen Y; Du B; Ding Y; Bao X
    Biomed Res Int; 2017; 2017():5318232. PubMed ID: 28459063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol.
    Lian J; Chao R; Zhao H
    Metab Eng; 2014 May; 23():92-9. PubMed ID: 24525332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exceptional hexose-fermenting ability of the xylitol-producing yeast Candida guilliermondii FTI 20037.
    Wen X; Sidhu S; Horemans SKC; Sooksawat N; Harner NK; Bajwa PK; Yuan Z; Lee H
    J Biosci Bioeng; 2016 Jun; 121(6):631-637. PubMed ID: 26596373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance testing of Zymomonas mobilis metabolically engineered for cofermentation of glucose, xylose, and arabinose.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 2002; 98-100():429-48. PubMed ID: 12018270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioconversion of lignocellulose-derived sugars to ethanol by engineered Saccharomyces cerevisiae.
    Madhavan A; Srivastava A; Kondo A; Bisaria VS
    Crit Rev Biotechnol; 2012 Mar; 32(1):22-48. PubMed ID: 21204601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.