These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 12839797)
1. Identification of Cryptosporidium spp. oocysts in United Kingdom noncarbonated natural mineral waters and drinking waters by using a modified nested PCR-restriction fragment length polymorphism assay. Nichols RA; Campbell BM; Smith HV Appl Environ Microbiol; 2003 Jul; 69(7):4183-9. PubMed ID: 12839797 [TBL] [Abstract][Full Text] [Related]
2. Optimization of DNA extraction and molecular detection of Cryptosporidium oocysts in natural mineral water sources. Nichols RA; Smith HV J Food Prot; 2004 Mar; 67(3):524-32. PubMed ID: 15035368 [TBL] [Abstract][Full Text] [Related]
3. Molecular fingerprinting of Cryptosporidium oocysts isolated during water monitoring. Nichols RA; Campbell BM; Smith HV Appl Environ Microbiol; 2006 Aug; 72(8):5428-35. PubMed ID: 16885295 [TBL] [Abstract][Full Text] [Related]
4. Detection and differentiation of Cryptosporidium oocysts in water by PCR-RFLP. Xiao L; Lal AA; Jiang J Methods Mol Biol; 2004; 268():163-76. PubMed ID: 15156028 [TBL] [Abstract][Full Text] [Related]
5. Identification of Cryptosporidium species and genotypes in Scottish raw and drinking waters during a one-year monitoring period. Nichols RA; Connelly L; Sullivan CB; Smith HV Appl Environ Microbiol; 2010 Sep; 76(17):5977-86. PubMed ID: 20639357 [TBL] [Abstract][Full Text] [Related]
6. Detection and discrimination of Cryptosporidium parvum and C. hominis in water samples by immunomagnetic separation-PCR. Ochiai Y; Takada C; Hosaka M Appl Environ Microbiol; 2005 Feb; 71(2):898-903. PubMed ID: 15691946 [TBL] [Abstract][Full Text] [Related]
7. [Investigation of the presence of Cryptosporidium spp. in different water sources in Mersin province, Turkey]. Aslan G; Bayram G; Otağ F; Direkel S; Taylan Özkan A; Ceber K; Emekdaş G Mikrobiyol Bul; 2012 Jan; 46(1):93-100. PubMed ID: 22399176 [TBL] [Abstract][Full Text] [Related]
8. Detection and resolution of Cryptosporidium species and species mixtures by genus-specific nested PCR-restriction fragment length polymorphism analysis, direct sequencing, and cloning. Ruecker NJ; Hoffman RM; Chalmers RM; Neumann NF Appl Environ Microbiol; 2011 Jun; 77(12):3998-4007. PubMed ID: 21498746 [TBL] [Abstract][Full Text] [Related]
9. Sources and species of cryptosporidium oocysts in the Wachusett Reservoir watershed. Jellison KL; Hemond HF; Schauer DB Appl Environ Microbiol; 2002 Feb; 68(2):569-75. PubMed ID: 11823192 [TBL] [Abstract][Full Text] [Related]
10. Comparison of method 1623 and cell culture-PCR for detection of Cryptosporidium spp. in source waters. LeChevallier MW; Di Giovanni GD; Clancy JL; Bukhari Z; Bukhari S; Rosen JS; Sobrinho J; Frey MM Appl Environ Microbiol; 2003 Feb; 69(2):971-9. PubMed ID: 12571019 [TBL] [Abstract][Full Text] [Related]
11. Molecular characterization of cryptosporidium oocysts in samples of raw surface water and wastewater. Xiao L; Singh A; Limor J; Graczyk TK; Gradus S; Lal A Appl Environ Microbiol; 2001 Mar; 67(3):1097-101. PubMed ID: 11229897 [TBL] [Abstract][Full Text] [Related]
12. An evaluation of primers amplifying DNA targets for the detection of Cryptosporidium spp. using C. parvum HNJ-1 Japanese isolate in water samples. Leetz AS; Sotiriadou I; Ongerth J; Karanis P Parasitol Res; 2007 Sep; 101(4):951-62. PubMed ID: 17514380 [TBL] [Abstract][Full Text] [Related]
13. A rapid method for extracting oocyst DNA from Cryptosporidium-positive human faeces for outbreak investigations. Nichols RA; Moore JE; Smith HV J Microbiol Methods; 2006 Jun; 65(3):512-24. PubMed ID: 16290112 [TBL] [Abstract][Full Text] [Related]
14. An immunomagnetic separation-real-time PCR method for quantification of Cryptosporidium parvum in water samples. Fontaine M; Guillot E J Microbiol Methods; 2003 Jul; 54(1):29-36. PubMed ID: 12732419 [TBL] [Abstract][Full Text] [Related]
15. Molecular characterization of bovine Cryptosporidium isolated from diarrheic calves in the Sudan. Taha S; Elmalik K; Bangoura B; Lendner M; Mossaad E; Daugschies A Parasitol Res; 2017 Nov; 116(11):2971-2979. PubMed ID: 28900722 [TBL] [Abstract][Full Text] [Related]
16. Species-specific, nested PCR-restriction fragment length polymorphism detection of single Cryptosporidium parvum oocysts. Sturbaum GD; Reed C; Hoover PJ; Jost BH; Marshall MM; Sterling CR Appl Environ Microbiol; 2001 Jun; 67(6):2665-8. PubMed ID: 11375178 [TBL] [Abstract][Full Text] [Related]
17. Cryptosporidiosis in Haiti: surprisingly low level of species diversity revealed by molecular characterization of Cryptosporidium oocysts from surface water and groundwater. Damiani C; Balthazard-Accou K; Clervil E; Diallo A; Da Costa C; Emmanuel E; Totet A; Agnamey P Parasite; 2013; 20():45. PubMed ID: 24252814 [TBL] [Abstract][Full Text] [Related]
18. Isolation, genotyping and subtyping of single Cryptosporidium oocysts from calves with special reference to zoonotic significance. Gharieb RMA; Bowman DD; Liotta JL; Xiao L Vet Parasitol; 2019 Jul; 271():80-86. PubMed ID: 31303210 [TBL] [Abstract][Full Text] [Related]
19. Detection of Cryptosporidium species in the sea and tap water samples of Black Sea, Turkey. Koloren Z; Kaya D; Avsar C J Parasitol; 2013 Jun; 99(3):554-7. PubMed ID: 23145771 [TBL] [Abstract][Full Text] [Related]
20. Occurrences and genotypes of Cryptosporidium oocysts in river network of southern-eastern China. Xiao S; An W; Chen Z; Zhang D; Yu J; Yang M Parasitol Res; 2012 May; 110(5):1701-9. PubMed ID: 22006191 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]