BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 12840044)

  • 21. Discovery of Phytophthora infestans genes expressed in planta through mining of cDNA libraries.
    Sierra R; Rodríguez-R LM; Chaves D; Pinzón A; Grajales A; Rojas A; Mutis G; Cárdenas M; Burbano D; Jiménez P; Bernal A; Restrepo S
    PLoS One; 2010 Mar; 5(3):e9847. PubMed ID: 20352100
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exploration of the late stages of the tomato-Phytophthora parasitica interactions through histological analysis and generation of expressed sequence tags.
    Le Berre JY; Engler G; Panabières F
    New Phytol; 2008; 177(2):480-492. PubMed ID: 18028297
    [TBL] [Abstract][Full Text] [Related]  

  • 23. SCR96, a small cysteine-rich secretory protein of Phytophthora cactorum, can trigger cell death in the Solanaceae and is important for pathogenicity and oxidative stress tolerance.
    Chen XR; Li YP; Li QY; Xing YP; Liu BB; Tong YH; Xu JY
    Mol Plant Pathol; 2016 May; 17(4):577-87. PubMed ID: 26307454
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Invertases in Phytophthora infestans Localize to Haustoria and Are Programmed for Infection-Specific Expression.
    Kagda MS; Martínez-Soto D; Ah-Fong AMV; Judelson HS
    mBio; 2020 Oct; 11(5):. PubMed ID: 33051363
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Galpha subunit controls zoospore motility and virulence in the potato late blight pathogen Phytophthora infestans.
    Latijnhouwers M; Ligterink W; Vleeshouwers VG; van West P; Govers F
    Mol Microbiol; 2004 Feb; 51(4):925-36. PubMed ID: 14763970
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effector genomics accelerates discovery and functional profiling of potato disease resistance and phytophthora infestans avirulence genes.
    Vleeshouwers VG; Rietman H; Krenek P; Champouret N; Young C; Oh SK; Wang M; Bouwmeester K; Vosman B; Visser RG; Jacobsen E; Govers F; Kamoun S; Van der Vossen EA
    PLoS One; 2008 Aug; 3(8):e2875. PubMed ID: 18682852
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genomics of the plant pathogenic oomycete Phytophthora: insights into biology and evolution.
    Judelson HS
    Adv Genet; 2007; 57():97-141. PubMed ID: 17352903
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Second Kazal-like protease inhibitor from Phytophthora infestans inhibits and interacts with the apoplastic pathogenesis-related protease P69B of tomato.
    Tian M; Benedetti B; Kamoun S
    Plant Physiol; 2005 Jul; 138(3):1785-93. PubMed ID: 15980196
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The C-terminal half of Phytophthora infestans RXLR effector AVR3a is sufficient to trigger R3a-mediated hypersensitivity and suppress INF1-induced cell death in Nicotiana benthamiana.
    Bos JI; Kanneganti TD; Young C; Cakir C; Huitema E; Win J; Armstrong MR; Birch PR; Kamoun S
    Plant J; 2006 Oct; 48(2):165-76. PubMed ID: 16965554
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational and comparative analyses of 150 full-length cDNA sequences from the oomycete plant pathogen Phytophthora infestans.
    Win J; Kanneganti TD; Torto-Alalibo T; Kamoun S
    Fungal Genet Biol; 2006 Jan; 43(1):20-33. PubMed ID: 16380277
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabolic Model of the
    Rodenburg SYA; Seidl MF; Judelson HS; Vu AL; Govers F; de Ridder D
    mBio; 2019 Jul; 10(4):. PubMed ID: 31289172
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tomato SOBIR1/EVR Homologs Are Involved in Elicitin Perception and Plant Defense Against the Oomycete Pathogen Phytophthora parasitica.
    Peng KC; Wang CW; Wu CH; Huang CT; Liou RF
    Mol Plant Microbe Interact; 2015 Aug; 28(8):913-26. PubMed ID: 25710821
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Towards understanding the virulence functions of RXLR effectors of the oomycete plant pathogen Phytophthora infestans.
    Birch PR; Armstrong M; Bos J; Boevink P; Gilroy EM; Taylor RM; Wawra S; Pritchard L; Conti L; Ewan R; Whisson SC; van West P; Sadanandom A; Kamoun S
    J Exp Bot; 2009; 60(4):1133-40. PubMed ID: 19204033
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phytophthora capsici-tomato interaction features dramatic shifts in gene expression associated with a hemi-biotrophic lifestyle.
    Jupe J; Stam R; Howden AJ; Morris JA; Zhang R; Hedley PE; Huitema E
    Genome Biol; 2013 Jun; 14(6):R63. PubMed ID: 23799990
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Divergent Evolution of PcF/SCR74 Effectors in Oomycetes Is Associated with Distinct Recognition Patterns in Solanaceous Plants.
    Lin X; Wang S; de Rond L; Bertolin N; Wouters RHM; Wouters D; Domazakis E; Bitew MK; Win J; Dong S; Visser RGF; Birch P; Kamoun S; Vleeshouwers VGAA
    mBio; 2020 Jun; 11(3):. PubMed ID: 32605983
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Establishment of a novel virus-induced virulence effector assay for the identification of virulence effectors of plant pathogens using a PVX-based expression vector.
    Shi J; Zhu Y; Li M; Ma Y; Liu H; Zhang P; Fang D; Guo Y; Xu P; Qiao Y
    Mol Plant Pathol; 2020 Dec; 21(12):1654-1661. PubMed ID: 33029873
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans.
    Haas BJ; Kamoun S; Zody MC; Jiang RH; Handsaker RE; Cano LM; Grabherr M; Kodira CD; Raffaele S; Torto-Alalibo T; Bozkurt TO; Ah-Fong AM; Alvarado L; Anderson VL; Armstrong MR; Avrova A; Baxter L; Beynon J; Boevink PC; Bollmann SR; Bos JI; Bulone V; Cai G; Cakir C; Carrington JC; Chawner M; Conti L; Costanzo S; Ewan R; Fahlgren N; Fischbach MA; Fugelstad J; Gilroy EM; Gnerre S; Green PJ; Grenville-Briggs LJ; Griffith J; Grünwald NJ; Horn K; Horner NR; Hu CH; Huitema E; Jeong DH; Jones AM; Jones JD; Jones RW; Karlsson EK; Kunjeti SG; Lamour K; Liu Z; Ma L; Maclean D; Chibucos MC; McDonald H; McWalters J; Meijer HJ; Morgan W; Morris PF; Munro CA; O'Neill K; Ospina-Giraldo M; Pinzón A; Pritchard L; Ramsahoye B; Ren Q; Restrepo S; Roy S; Sadanandom A; Savidor A; Schornack S; Schwartz DC; Schumann UD; Schwessinger B; Seyer L; Sharpe T; Silvar C; Song J; Studholme DJ; Sykes S; Thines M; van de Vondervoort PJ; Phuntumart V; Wawra S; Weide R; Win J; Young C; Zhou S; Fry W; Meyers BC; van West P; Ristaino J; Govers F; Birch PR; Whisson SC; Judelson HS; Nusbaum C
    Nature; 2009 Sep; 461(7262):393-8. PubMed ID: 19741609
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transcriptome signatures of tomato leaf induced by Phytophthora infestans and functional identification of transcription factor SpWRKY3.
    Cui J; Xu P; Meng J; Li J; Jiang N; Luan Y
    Theor Appl Genet; 2018 Apr; 131(4):787-800. PubMed ID: 29234827
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analyses of genome architecture and gene expression reveal novel candidate virulence factors in the secretome of Phytophthora infestans.
    Raffaele S; Win J; Cano LM; Kamoun S
    BMC Genomics; 2010 Nov; 11():637. PubMed ID: 21080964
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Two genes encoding GH10 xylanases are essential for the virulence of the oomycete plant pathogen Phytophthora parasitica.
    Lai MW; Liou RF
    Curr Genet; 2018 Aug; 64(4):931-943. PubMed ID: 29470644
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.