BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

442 related articles for article (PubMed ID: 12840071)

  • 1. Cell cycle behavior of human HP1 subtypes: distinct molecular domains of HP1 are required for their centromeric localization during interphase and metaphase.
    Hayakawa T; Haraguchi T; Masumoto H; Hiraoka Y
    J Cell Sci; 2003 Aug; 116(Pt 16):3327-38. PubMed ID: 12840071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic and selective interactions of the transcriptional corepressor TIF1 beta with the heterochromatin protein HP1 isotypes during cell differentiation.
    Cammas F; Janoshazi A; Lerouge T; Losson R
    Differentiation; 2007 Sep; 75(7):627-37. PubMed ID: 17381543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constitutive heterochromatin during mouse oogenesis: the pattern of histone H3 modifications and localization of HP1alpha and HP1beta proteins.
    Meglicki M; Zientarski M; Borsuk E
    Mol Reprod Dev; 2008 Feb; 75(2):414-28. PubMed ID: 17891782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localization and phosphorylation of HP1 proteins during the cell cycle in mammalian cells.
    Minc E; Allory Y; Worman HJ; Courvalin JC; Buendia B
    Chromosoma; 1999 Aug; 108(4):220-34. PubMed ID: 10460410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasticity of HP1 proteins in mammalian cells.
    Dialynas GK; Terjung S; Brown JP; Aucott RL; Baron-Luhr B; Singh PB; Georgatos SD
    J Cell Sci; 2007 Oct; 120(Pt 19):3415-24. PubMed ID: 17855382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of mammalian proteins involved in chromatin modification reveals new metaphase centromeric proteins and distinct chromosomal distribution patterns.
    Craig JM; Earle E; Canham P; Wong LH; Anderson M; Choo KH
    Hum Mol Genet; 2003 Dec; 12(23):3109-21. PubMed ID: 14519686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HP1 links centromeric heterochromatin to centromere cohesion in mammals.
    Yi Q; Chen Q; Liang C; Yan H; Zhang Z; Xiang X; Zhang M; Qi F; Zhou L; Wang F
    EMBO Rep; 2018 Apr; 19(4):. PubMed ID: 29491004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A conserved Mis12 centromere complex is linked to heterochromatic HP1 and outer kinetochore protein Zwint-1.
    Obuse C; Iwasaki O; Kiyomitsu T; Goshima G; Toyoda Y; Yanagida M
    Nat Cell Biol; 2004 Nov; 6(11):1135-41. PubMed ID: 15502821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subcellular distribution of HP1 proteins is altered in ICF syndrome.
    Luciani JJ; Depetris D; Missirian C; Mignon-Ravix C; Metzler-Guillemain C; Megarbane A; Moncla A; Mattei MG
    Eur J Hum Genet; 2005 Jan; 13(1):41-51. PubMed ID: 15470359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human origin recognition complex is essential for HP1 binding to chromatin and heterochromatin organization.
    Prasanth SG; Shen Z; Prasanth KV; Stillman B
    Proc Natl Acad Sci U S A; 2010 Aug; 107(34):15093-8. PubMed ID: 20689044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential effects of heterochromatin protein 1 isoforms on mitotic chromosome distribution and growth in Dictyostelium discoideum.
    Kaller M; Euteneuer U; Nellen W
    Eukaryot Cell; 2006 Mar; 5(3):530-43. PubMed ID: 16524908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional domain analysis of human HP1 isoforms in Drosophila.
    Kato M; Kato Y; Nishida M; Hayakawa T; Haraguchi T; Hiraoka Y; H Inoue Y; Yamaguchi M
    Cell Struct Funct; 2007; 32(1):57-67. PubMed ID: 17575412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Ki-67 protein interacts with members of the heterochromatin protein 1 (HP1) family: a potential role in the regulation of higher-order chromatin structure.
    Scholzen T; Endl E; Wohlenberg C; van der Sar S; Cowell IG; Gerdes J; Singh PB
    J Pathol; 2002 Feb; 196(2):135-44. PubMed ID: 11793364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maintenance of stable heterochromatin domains by dynamic HP1 binding.
    Cheutin T; McNairn AJ; Jenuwein T; Gilbert DM; Singh PB; Misteli T
    Science; 2003 Jan; 299(5607):721-5. PubMed ID: 12560555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversible disruption of pericentric heterochromatin and centromere function by inhibiting deacetylases.
    Taddei A; Maison C; Roche D; Almouzni G
    Nat Cell Biol; 2001 Feb; 3(2):114-20. PubMed ID: 11175742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitotic centromeric targeting of HP1 and its binding to Sgo1 are dispensable for sister-chromatid cohesion in human cells.
    Kang J; Chaudhary J; Dong H; Kim S; Brautigam CA; Yu H
    Mol Biol Cell; 2011 Apr; 22(8):1181-90. PubMed ID: 21346195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HP1α is not necessary for the structural maintenance of centromeric heterochromatin.
    Velichko AK; Kantidze OL; Razin SV
    Epigenetics; 2011 Mar; 6(3):380-7. PubMed ID: 20962594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A glue for heterochromatin maintenance: stable SUV39H1 binding to heterochromatin is reinforced by the SET domain.
    Krouwels IM; Wiesmeijer K; Abraham TE; Molenaar C; Verwoerd NP; Tanke HJ; Dirks RW
    J Cell Biol; 2005 Aug; 170(4):537-49. PubMed ID: 16103223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perturbation of HP1 localization and chromatin binding ability causes defects in sister-chromatid cohesion.
    Inoue A; Hyle J; Lechner MS; Lahti JM
    Mutat Res; 2008 Nov; 657(1):48-55. PubMed ID: 18790078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct centromere domain structures with separate functions demonstrated in live fission yeast cells.
    Appelgren H; Kniola B; Ekwall K
    J Cell Sci; 2003 Oct; 116(Pt 19):4035-42. PubMed ID: 12928332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.