BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 12840599)

  • 1. Role of actions of calcium antagonists on efferent arterioles--with special references to glomerular hypertension.
    Hayashi K; Ozawa Y; Fujiwara K; Wakino S; Kumagai H; Saruta T
    Am J Nephrol; 2003; 23(4):229-44. PubMed ID: 12840599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disparate effects of calcium antagonists on renal microcirculation.
    Hayashi K; Nagahama T; Oka K; Epstein M; Saruta T
    Hypertens Res; 1996 Mar; 19(1):31-6. PubMed ID: 8829821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pathophysiological significance of T-type Ca2+ channels: role of T-type Ca2+ channels in renal microcirculation.
    Hayashi K; Wakino S; Homma K; Sugano N; Saruta T
    J Pharmacol Sci; 2005 Nov; 99(3):221-7. PubMed ID: 16293936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vascular effects of calcium channel antagonists: new evidence.
    Richard S
    Drugs; 2005; 65 Suppl 2():1-10. PubMed ID: 16398057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Renal afferent and efferent arteriolar dilation by nilvadipine: studies in the isolated perfused hydronephrotic kidney.
    Ozawa Y; Hayashi K; Nagahama T; Fujiwara K; Wakino S; Saruta T
    J Cardiovasc Pharmacol; 1999 Feb; 33(2):243-7. PubMed ID: 10028932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of T-type selective calcium antagonist on renal microcirculation: studies in the isolated perfused hydronephrotic kidney.
    Ozawa Y; Hayashi K; Nagahama T; Fujiwara K; Saruta T
    Hypertension; 2001 Sep; 38(3):343-7. PubMed ID: 11566902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ca2+ channel subtypes and pharmacology in the kidney.
    Hayashi K; Wakino S; Sugano N; Ozawa Y; Homma K; Saruta T
    Circ Res; 2007 Feb; 100(3):342-53. PubMed ID: 17307972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Divergent renal vasodilator action of L- and T-type calcium antagonists in vivo.
    Honda M; Hayashi K; Matsuda H; Kubota E; Tokuyama H; Okubo K; Takamatsu I; Ozawa Y; Saruta T
    J Hypertens; 2001 Nov; 19(11):2031-7. PubMed ID: 11677369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of calcium antagonists on glomerular arterioles in spontaneously hypertensive rats.
    Sabbatini M; Leonardi A; Testa R; Vitaioli L; Amenta F
    Hypertension; 2000 Mar; 35(3):775-9. PubMed ID: 10720594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. T-type calcium channels in the regulation of afferent and efferent arterioles in rats.
    Feng MG; Li M; Navar LG
    Am J Physiol Renal Physiol; 2004 Feb; 286(2):F331-7. PubMed ID: 14583435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antihypertensive agents and renal protection: calcium channel blockers.
    Saruta T; Kanno Y; Hayashi K; Konishi K
    Kidney Int Suppl; 1996 Jun; 55():S52-6. PubMed ID: 8743511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular mechanism for mibefradil-induced vasodilation of renal microcirculation: studies in the isolated perfused hydronephrotic kidney.
    Hayashi K; Ozawa Y; Wakino S; Kanda T; Homma K; Takamatsu I; Tatematsu S; Saruta T
    J Cardiovasc Pharmacol; 2003 Dec; 42(6):697-702. PubMed ID: 14639089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the renal action of pranidipine in the rat.
    Nagahama T; Hayashi K; Fujiwara K; Ozawa Y; Saruta T
    Arzneimittelforschung; 2000 Mar; 50(3):248-53. PubMed ID: 10758776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benidipine dilates both pre- and post-glomerular arteriole in the canine kidney.
    Yue W; Kimura S; Fujisawa Y; Tian R; Li F; Rahman M; Nishiyama A; Fukui T; Abe Y
    Hypertens Res; 2001 Jul; 24(4):429-36. PubMed ID: 11510756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Divergent mechanisms of ATP-sensitive K+ channel-induced vasodilation in renal afferent and efferent arterioles. Evidence of L-type Ca2+ channel-dependent and -independent actions of pinacidil.
    Reslerova M; Loutzenhiser R
    Circ Res; 1995 Dec; 77(6):1114-20. PubMed ID: 7586223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transient receptor potential channels in rat renal microcirculation: actions of angiotensin II.
    Takenaka T; Suzuki H; Okada H; Inoue T; Kanno Y; Ozawa Y; Hayashi K; Saruta T
    Kidney Int; 2002 Aug; 62(2):558-65. PubMed ID: 12110018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of protein kinase C in Ca channel blocker-induced renal arteriolar dilation in spontaneously hypertensive rats--studies in the isolated perfused hydronephrotic kidney.
    Hayashi K; Wakino S; Ozawa Y; Homma K; Kanda T; Okubo K; Takamatsu I; Tatematsu S; Kumagai H; Saruta T
    Keio J Med; 2005 Jun; 54(2):102-8. PubMed ID: 16077260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relative contributions of Ca2+ mobilization and influx in renal arteriolar contractile responses to arginine vasopressin.
    Fallet RW; Ikenaga H; Bast JP; Carmines PK
    Am J Physiol Renal Physiol; 2005 Mar; 288(3):F545-51. PubMed ID: 15536171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct action of aranidipine and its active metabolite on renal arterioles, with special reference to renal protection.
    Nakamura A; Hayashi K; Fujiwara K; Ozawa Y; Honda M; Saruta T
    J Cardiovasc Pharmacol; 2000 Jun; 35(6):942-8. PubMed ID: 10836731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of efonidipine hydrochloride on renal arteriolar diameters in spontaneously hypertensive rats.
    Nakamura M; Notoya M; Kohda Y; Yamashita J; Takashita Y; Gemba M
    Hypertens Res; 2002 Sep; 25(5):751-5. PubMed ID: 12452329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.