These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 12840832)
1. Manifestation of chiral recognition of camphor enantiomers by alpha-cyclodextrin in longitudinal and transverse relaxation rates of the corresponding 1:2 complexes and determination of the orientation of the guest inside the host capsule. Anczewski W; Dodziuk H; Ejchart A Chirality; 2003 Aug; 15(7):654-9. PubMed ID: 12840832 [TBL] [Abstract][Full Text] [Related]
2. The anatomy of the energetics of molecular recognition by calorimetry: chiral discrimination of camphor by alpha-cyclodextrin. Schmidtchen FP Chemistry; 2002 Aug; 8(15):3522-9. PubMed ID: 12203332 [TBL] [Abstract][Full Text] [Related]
3. Quinuclidine complex with alpha-cyclodextrin: a diffusion and 13C NMR relaxation study. Aski SN; Kowalewski J Magn Reson Chem; 2008 Mar; 46(3):261-7. PubMed ID: 18236433 [TBL] [Abstract][Full Text] [Related]
4. Chiral discrimination of the analgesic cizolirtine by using cyclodextrins: A (1)H NMR study on the solution structures of their host-guest complexes. Redondo J; Blázquez MA; Torrens A Chirality; 1999; 11(9):694-700. PubMed ID: 10506430 [TBL] [Abstract][Full Text] [Related]
5. Spectrophotometric and calorimetric titration studies on molecular recognition of camphor and borneol by nucleobase-modified beta-cyclodextrins. Liu Y; Zhang Q; Chen Y J Phys Chem B; 2007 Oct; 111(42):12211-8. PubMed ID: 17914791 [TBL] [Abstract][Full Text] [Related]
6. Determination of association constants at moderately fast chemical exchange: complexation of camphor enantiomers by alpha-cyclodextrin. Bernatowicz P; Nowakowski M; Dodziuk H; Ejchart A J Magn Reson; 2006 Aug; 181(2):304-9. PubMed ID: 16793297 [TBL] [Abstract][Full Text] [Related]
7. Study of the inclusion of the (R)- and (S)-camphor enantiomers in alpha-cyclodextrin by X-ray crystallography and molecular dynamics. Kokkinou A; Tsorteki F; Karpusas M; Papakyriakou A; Bethanis K; Mentzafos D Carbohydr Res; 2010 May; 345(8):1034-40. PubMed ID: 20378101 [TBL] [Abstract][Full Text] [Related]
8. Circular dichroism of host-guest complexes of achiral pyridino- and phenazino-18-crown-6 ligands with the enantiomers of chiral aralkyl ammonium salts. Somogyi L; Samu E; Huszthy P; Lázár A; Aángyán J; Surján P; Hollósi M Chirality; 2001 Feb; 13(2):109-17. PubMed ID: 11170254 [TBL] [Abstract][Full Text] [Related]
9. 1H and (13)C NMR and Molecular Dynamics Study of Chiral Recognition of Camphor Enantiomers by alpha-Cyclodextrin. Dodziuk H; Ejchart A; Lukin O; Vysotsky MO J Org Chem; 1999 Mar; 64(5):1503-1507. PubMed ID: 11674211 [TBL] [Abstract][Full Text] [Related]
10. Thermodynamics of the molecular and chiral recognition of cycloalkanols and camphor by modified beta-cyclodextrins possessing simple aromatic tethers. Liu Y; Yang EC; Yang YW; Zhang HY; Fan Z; Ding F; Cao R J Org Chem; 2004 Jan; 69(1):173-80. PubMed ID: 14703393 [TBL] [Abstract][Full Text] [Related]
11. Probing the discriminating power of chiral crown hosts by CD spectroscopy. Farkas V; Szalay L; Vass E; Hollósi M; Horváth G; Huszthy P Chirality; 2003; 15 Suppl():S65-73. PubMed ID: 12884376 [TBL] [Abstract][Full Text] [Related]
12. Chiral discrimination in host-guest supramolecular complexes. Understanding enantioselectivity and solid solution behaviors by using spectroscopic methods and chemical sensors. Grandeury A; Condamine E; Hilfert L; Gouhier G; Petit S; Coquerel G J Phys Chem B; 2007 Jun; 111(25):7017-26. PubMed ID: 17547451 [TBL] [Abstract][Full Text] [Related]
13. Molecular recognition in cyclodextrin complexes of amino acid derivatives: the effects of kinetic energy on the molecular recognition of a pseudopeptide in a nonconstraining host environment as revealed by a temperature-dependent crystallographic study. Clark JL; Peinado J; Stezowski JJ; Vold RL; Huang Y; Hoatson GL J Phys Chem B; 2006 Dec; 110(51):26375-87. PubMed ID: 17181297 [TBL] [Abstract][Full Text] [Related]
16. Cyclodextrin cavity size effect on the complexation and rotational dynamics of the laser dye 2,5-diphenyl-1,3,4-oxadiazole: from singly occupied complexes to their nanotubular self-assemblies. Pistolis G; Balomenou I J Phys Chem B; 2006 Aug; 110(33):16428-38. PubMed ID: 16913774 [TBL] [Abstract][Full Text] [Related]
17. Determination of the enantiomeric composition of phenylalanine samples by chemometric analysis of the fluorescence spectra of cyclodextrin guest-host complexes. Fakayode SO; Busch MA; Bellert DJ; Busch KW Analyst; 2005 Feb; 130(2):233-41. PubMed ID: 15665979 [TBL] [Abstract][Full Text] [Related]
18. High-resolution field-cycling NMR studies of a DNA octamer as a probe of phosphodiester dynamics and comparison with computer simulation. Roberts MF; Cui Q; Turner CJ; Case DA; Redfield AG Biochemistry; 2004 Mar; 43(12):3637-50. PubMed ID: 15035634 [TBL] [Abstract][Full Text] [Related]
19. Nuclear magnetic resonance signaling of molecular chiral information using an achiral reagent. Shundo A; Labuta J; Hill JP; Ishihara S; Ariga K J Am Chem Soc; 2009 Jul; 131(27):9494-5. PubMed ID: 19545158 [TBL] [Abstract][Full Text] [Related]
20. A rigorous framework to interpret water relaxivity. The case study of a Gd(III) complex with an alpha-cyclodextrin derivative. Bonnet CS; Fries PH; Gadelle A; Gambarelli S; Delangle P J Am Chem Soc; 2008 Aug; 130(31):10401-13. PubMed ID: 18620395 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]