These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 12841611)

  • 1. Tissue engineering of bone for mandibular augmentation in immunocompetent minipigs: preliminary study.
    Gröger A; Kläring S; Merten HA; Holste J; Kaps C; Sittinger M
    Scand J Plast Reconstr Surg Hand Surg; 2003; 37(3):129-33. PubMed ID: 12841611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Soft tissue and hard tissue engineering in oral and maxillofacial surgery.
    Schmelzeisen R; Schimming R; Sittinger M
    Ann R Australas Coll Dent Surg; 2002 Oct; 16():50-3. PubMed ID: 14507132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bone engineering on the basis of periosteal cells cultured in polymer fleeces.
    Redlich A; Perka C; Schultz O; Spitzer R; Häupl T; Burmester GR; Sittinger M
    J Mater Sci Mater Med; 1999 Dec; 10(12):767-72. PubMed ID: 15347948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstruction of mandibular defects with autologous tissue-engineered bone.
    Abukawa H; Shin M; Williams WB; Vacanti JP; Kaban LB; Troulis MJ
    J Oral Maxillofac Surg; 2004 May; 62(5):601-6. PubMed ID: 15122567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tissue engineered bone repair of calvarial defects using cultured periosteal cells.
    Breitbart AS; Grande DA; Kessler R; Ryaby JT; Fitzsimmons RJ; Grant RT
    Plast Reconstr Surg; 1998 Mar; 101(3):567-74; discussion 575-6. PubMed ID: 9500373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of a mandibular condyle in vitro by tissue engineering.
    Abukawa H; Terai H; Hannouche D; Vacanti JP; Kaban LB; Troulis MJ
    J Oral Maxillofac Surg; 2003 Jan; 61(1):94-100. PubMed ID: 12524615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Segmental bone repair by tissue-engineered periosteal cell transplants with bioresorbable fleece and fibrin scaffolds in rabbits.
    Perka C; Schultz O; Spitzer RS; Lindenhayn K; Burmester GR; Sittinger M
    Biomaterials; 2000 Jun; 21(11):1145-53. PubMed ID: 10817267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Making bone: implant insertion into tissue-engineered bone for maxillary sinus floor augmentation-a preliminary report.
    Schmelzeisen R; Schimming R; Sittinger M
    J Craniomaxillofac Surg; 2003 Feb; 31(1):34-9. PubMed ID: 12553924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone augmentation with autologous periosteal cells and two different calcium phosphate scaffolds under an occlusive titanium barrier: an experimental study in rabbits.
    Maréchal M; Eyckmans J; Schrooten J; Schepers E; Luyten FP; van Steenberghe D
    J Periodontol; 2008 May; 79(5):896-904. PubMed ID: 18454669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Repair of calvarial defects with customised tissue-engineered bone grafts II. Evaluation of cellular efficiency and efficacy in vivo.
    Schantz JT; Hutmacher DW; Lam CX; Brinkmann M; Wong KM; Lim TC; Chou N; Guldberg RE; Teoh SH
    Tissue Eng; 2003; 9 Suppl 1():S127-39. PubMed ID: 14511476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Platelet-rich fibrin membranes as scaffolds for periosteal tissue engineering.
    Gassling V; Douglas T; Warnke PH; Açil Y; Wiltfang J; Becker ST
    Clin Oral Implants Res; 2010 May; 21(5):543-9. PubMed ID: 20443805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tissue-engineered bone for maxillary sinus augmentation.
    Schimming R; Schmelzeisen R
    J Oral Maxillofac Surg; 2004 Jun; 62(6):724-9. PubMed ID: 15170286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computer-aided approach for customized cell-based defect reconstruction.
    Meyer U; Neunzehn J; Wiesmann HP
    Methods Mol Biol; 2012; 868():27-43. PubMed ID: 22692602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repair of canine mandibular bone defects with bone marrow stromal cells and coral.
    Yuan J; Zhang WJ; Liu G; Wei M; Qi ZL; Liu W; Cui L; Cao YL
    Tissue Eng Part A; 2010 Apr; 16(4):1385-94. PubMed ID: 19925049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Experimental research on osteogenic abilities of new bone tissue engineering scaffolds by recombinant bone morphogenetic protein].
    Li Y; Ran W; Liu M; Liu Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Aug; 27(4):825-8. PubMed ID: 20842853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional composites manufactured with human mesenchymal cambial layer precursor cells as an alternative for sinus floor augmentation: an in vitro study.
    Turhani D; Watzinger E; Weissenböck M; Yerit K; Cvikl B; Thurnher D; Ewers R
    Clin Oral Implants Res; 2005 Aug; 16(4):417-24. PubMed ID: 16117765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Histological comparison of different biopolymers in osseous defects].
    Nitsch A; Merten HA; Verheggen R
    Schweiz Monatsschr Zahnmed; 2007; 117(7):720-7. PubMed ID: 17708424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repair of mandibular defects using MSCs-seeded biodegradable polyester porous scaffolds.
    Ren J; Ren T; Zhao P; Huang Y; Pan K
    J Biomater Sci Polym Ed; 2007; 18(5):505-17. PubMed ID: 17550655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Histological and histomorphometrical comparative study of β-tricalcium phosphate block grafts and periosteal expansion osteogenesis for alveolar bone augmentation.
    Yamauchi K; Takahashi T; Funaki K; Hamada Y; Yamashita Y
    Int J Oral Maxillofac Surg; 2010 Oct; 39(10):1000-6. PubMed ID: 20615666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The bone formation in vitro and mandibular defect repair using PLGA porous scaffolds.
    Ren T; Ren J; Jia X; Pan K
    J Biomed Mater Res A; 2005 Sep; 74(4):562-9. PubMed ID: 16025492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.