BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 1284207)

  • 1. Determining the neuronal connectivity of Golgi-impregnated neurons: ultrastructural assessment of functional aspects.
    Benshalom G
    Microsc Res Tech; 1992 Dec; 23(4):324-33. PubMed ID: 1284207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of the Golgi/electron microscopy technique for cell identification in immunocytochemical, retrograde labeling, and developmental studies of hippocampal neurons.
    Frotscher M
    Microsc Res Tech; 1992 Dec; 23(4):306-23. PubMed ID: 1295615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synaptic plasticity in micropatterned neuronal networks.
    Vogt AK; Wrobel G; Meyer W; Knoll W; Offenhäusser A
    Biomaterials; 2005 May; 26(15):2549-57. PubMed ID: 15585257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synaptic connections of neurones identified by Golgi impregnation: characterization by immunocytochemical, enzyme histochemical, and degeneration methods.
    Somogyi P
    J Electron Microsc Tech; 1990 Aug; 15(4):332-51. PubMed ID: 2202793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative aspects of synapses on Golgi-impregnated neurons.
    Müller LJ; Cardozo BN; Vrensen GF
    Microsc Res Tech; 1992 Dec; 23(4):334-52. PubMed ID: 1284208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutamate decarboxylase-immunoreactive structures in the rat neostriatum: a correlated light and electron microscopic study including a combination of Golgi impregnation with immunocytochemistry.
    Bolam JP; Powell JF; Wu JY; Smith AD
    J Comp Neurol; 1985 Jul; 237(1):1-20. PubMed ID: 4044888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Axo-axonic chandelier cells in the rat fascia dentata: Golgi-electron microscopy and immunocytochemical studies.
    Soriano E; Nitsch R; Frotscher M
    J Comp Neurol; 1990 Mar; 293(1):1-25. PubMed ID: 1690225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Golgi-electron microscopic study of goldfish optic tectum. II. Quantitative aspects of synaptic organization.
    Meek J
    J Comp Neurol; 1981 Jun; 199(2):175-90. PubMed ID: 7251938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From the Golgi-Cajal mapping to the transmitter-based characterization of the neuronal networks leading to two modes of brain communication: wiring and volume transmission.
    Fuxe K; Dahlström A; Höistad M; Marcellino D; Jansson A; Rivera A; Diaz-Cabiale Z; Jacobsen K; Tinner-Staines B; Hagman B; Leo G; Staines W; Guidolin D; Kehr J; Genedani S; Belluardo N; Agnati LF
    Brain Res Rev; 2007 Aug; 55(1):17-54. PubMed ID: 17433836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dendritic and synaptic properties of collicular neurons: a quantitative light and electron microscopical study of Golgi-impregnated cells.
    Albers FJ; Meek J
    Anat Rec; 1991 Dec; 231(4):524-37. PubMed ID: 1793179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pioneering a golden age of cerebral microcircuits: the births of the combined Golgi-electron microscope methods.
    Fairén A
    Neuroscience; 2005; 136(3):607-14. PubMed ID: 16344138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Techniques for converting Golgi precipitate in CNS neurons into stable electron microscopic markers.
    Wouterlood FG
    Microsc Res Tech; 1992 Dec; 23(4):275-88. PubMed ID: 1295613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enigmatic bipolar cell of rat visual cortex.
    Peters A; Harriman KM
    J Comp Neurol; 1988 Jan; 267(3):409-32. PubMed ID: 2449476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron microscopy of Golgi-impregnated interneurons: notes on the intrinsic connectivity of the cerebral cortex.
    Fairén A; Smith-Fernández A
    Microsc Res Tech; 1992 Dec; 23(4):289-305. PubMed ID: 1295614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synaptic relationships between axon terminals from the mediodorsal thalamic nucleus and gamma-aminobutyric acidergic cortical cells in the prelimbic cortex of the rat.
    Kuroda M; Yokofujita J; Oda S; Price JL
    J Comp Neurol; 2004 Sep; 477(2):220-34. PubMed ID: 15300791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reverse optical trawling for synaptic connections in situ.
    Sasaki T; Minamisawa G; Takahashi N; Matsuki N; Ikegaya Y
    J Neurophysiol; 2009 Jul; 102(1):636-43. PubMed ID: 19386760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of synaptic terminals of thalamic or cortical origin in contact with distinct medium-size spiny neurons in the rat neostriatum.
    Dubé L; Smith AD; Bolam JP
    J Comp Neurol; 1988 Jan; 267(4):455-71. PubMed ID: 3346370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Morphological characteristics of various segments of local connections in the rat somatosensory cortex].
    Ponomareva EV
    Arkh Anat Gistol Embriol; 1983 Oct; 85(10):24-30. PubMed ID: 6661045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuronal and synaptic composition of the mediodorsal thalamic nucleus in the rat: a light and electron microscopic Golgi study.
    Kuroda M; López-Mascaraque L; Price JL
    J Comp Neurol; 1992 Dec; 326(1):61-81. PubMed ID: 1479069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synaptic organization in the teleost olfactory bulb.
    Kosaka T; Hama K
    J Physiol (Paris); 1982-1983; 78(8):707-19. PubMed ID: 7187445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.