These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 12842295)
1. Orbital prefrontal cortex and guidance of instrumental behaviour in rats under reversal conditions. Bohn I; Giertler C; Hauber W Behav Brain Res; 2003 Jul; 143(1):49-56. PubMed ID: 12842295 [TBL] [Abstract][Full Text] [Related]
2. Orbital prefrontal cortex and guidance of instrumental behavior of rats by visuospatial stimuli predicting reward magnitude. Bohn I; Giertler C; Hauber W Learn Mem; 2003; 10(3):177-86. PubMed ID: 12773582 [TBL] [Abstract][Full Text] [Related]
3. NMDA receptors in the rat orbital prefrontal cortex are involved in guidance of instrumental behaviour under reversal conditions. Bohn I; Giertler C; Hauber W Cereb Cortex; 2003 Sep; 13(9):968-76. PubMed ID: 12902396 [TBL] [Abstract][Full Text] [Related]
4. Involvement of the rat anterior cingulate cortex in control of instrumental responses guided by reward expectancy. Schweimer J; Hauber W Learn Mem; 2005; 12(3):334-42. PubMed ID: 15930509 [TBL] [Abstract][Full Text] [Related]
5. Guidance of instrumental behavior under reversal conditions requires dopamine D1 and D2 receptor activation in the orbitofrontal cortex. Calaminus C; Hauber W Neuroscience; 2008 Jul; 154(4):1195-204. PubMed ID: 18538938 [TBL] [Abstract][Full Text] [Related]
6. Transient inactivation of the rat nucleus accumbens does not impair guidance of instrumental behaviour by stimuli predicting reward magnitude. Giertler C; Bohn I; Hauber W Behav Pharmacol; 2004 Feb; 15(1):55-63. PubMed ID: 15075627 [TBL] [Abstract][Full Text] [Related]
7. The rat nucleus accumbens is involved in guiding of instrumental responses by stimuli predicting reward magnitude. Giertler C; Bohn I; Hauber W Eur J Neurosci; 2003 Oct; 18(7):1993-6. PubMed ID: 14622231 [TBL] [Abstract][Full Text] [Related]
8. Intact discrimination reversal learning but slowed responding to reward-predictive cues after dopamine D1 and D2 receptor blockade in the nucleus accumbens of rats. Calaminus C; Hauber W Psychopharmacology (Berl); 2007 Apr; 191(3):551-66. PubMed ID: 17021925 [TBL] [Abstract][Full Text] [Related]
9. Effects of excitotoxic lesions in the ventral striatopallidal--thalamocortical pathway on odor reversal learning: inability to extinguish an incorrect response. Ferry AT; Lu XC; Price JL Exp Brain Res; 2000 Apr; 131(3):320-35. PubMed ID: 10789947 [TBL] [Abstract][Full Text] [Related]
10. NMDA lesions in the medial prefrontal cortex impair the ability to inhibit responses during reversal of a simple spatial discrimination. Salazar RF; White W; Lacroix L; Feldon J; White IM Behav Brain Res; 2004 Jul; 152(2):413-24. PubMed ID: 15196810 [TBL] [Abstract][Full Text] [Related]
11. NMDA, but not dopamine D(2), receptors in the rat nucleus accumbens areinvolved in guidance of instrumental behavior by stimuli predicting reward magnitude. Hauber W; Bohn I; Giertler C J Neurosci; 2000 Aug; 20(16):6282-8. PubMed ID: 10934279 [TBL] [Abstract][Full Text] [Related]
12. Amygdala Contributions to Stimulus-Reward Encoding in the Macaque Medial and Orbital Frontal Cortex during Learning. Rudebeck PH; Ripple JA; Mitz AR; Averbeck BB; Murray EA J Neurosci; 2017 Feb; 37(8):2186-2202. PubMed ID: 28123082 [TBL] [Abstract][Full Text] [Related]
13. Effects of rat medial prefrontal cortex lesions on olfactory serial reversal and delayed alternation tasks. Kinoshita S; Yokoyama C; Masaki D; Yamashita T; Tsuchida H; Nakatomi Y; Fukui K Neurosci Res; 2008 Feb; 60(2):213-8. PubMed ID: 18077035 [TBL] [Abstract][Full Text] [Related]
14. Excitotoxic lesions to the prefrontal cortex of Sprague-Dawley rats do not impair response matching. Allen CP; Leri F Neurosci Lett; 2011 May; 495(1):30-4. PubMed ID: 21414386 [TBL] [Abstract][Full Text] [Related]
15. Selective delay activity in the medial prefrontal cortex of the rat: contribution of sensorimotor information and contingency. Cowen SL; McNaughton BL J Neurophysiol; 2007 Jul; 98(1):303-16. PubMed ID: 17507507 [TBL] [Abstract][Full Text] [Related]
16. Reward-related reversal learning after surgical excisions in orbito-frontal or dorsolateral prefrontal cortex in humans. Hornak J; O'Doherty J; Bramham J; Rolls ET; Morris RG; Bullock PR; Polkey CE J Cogn Neurosci; 2004 Apr; 16(3):463-78. PubMed ID: 15072681 [TBL] [Abstract][Full Text] [Related]
17. Lesions of mediodorsal thalamus and anterior thalamic nuclei produce dissociable effects on instrumental conditioning in rats. Corbit LH; Muir JL; Balleine BW Eur J Neurosci; 2003 Sep; 18(5):1286-94. PubMed ID: 12956727 [TBL] [Abstract][Full Text] [Related]
18. Effects of lesions of the orbitofrontal cortex on sensitivity to delayed and probabilistic reinforcement. Mobini S; Body S; Ho MY; Bradshaw CM; Szabadi E; Deakin JF; Anderson IM Psychopharmacology (Berl); 2002 Mar; 160(3):290-8. PubMed ID: 11889498 [TBL] [Abstract][Full Text] [Related]
20. Effects of quinolinic acid-induced lesions of the orbital prefrontal cortex on inter-temporal choice: a quantitative analysis. Kheramin S; Body S; Mobini S; Ho MY; Velázquez-Martinez DN; Bradshaw CM; Szabadi E; Deakin JF; Anderson IM Psychopharmacology (Berl); 2002 Dec; 165(1):9-17. PubMed ID: 12474113 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]