These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 12842450)

  • 1. Heat shock protein (HSP72) and p38 MAPK involvement in sublethal hemorrhage (SLH)-induced tolerance.
    Carter Y; Liu G; Stephens WB; Carter G; Yang J; Mendez C
    J Surg Res; 2003 May; 111(1):70-7. PubMed ID: 12842450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of p38 mitogen-activated protein kinase in the induction of tolerance to hemorrhagic and endotoxic shock.
    Mendez C; Jaffray C; Wong V; Salhab KF; Kramer AA; Carey LC; Norman JG
    J Surg Res; 2000 Jun; 91(2):165-70. PubMed ID: 10839967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sublethal hemorrhage induces tolerance in animals exposed to cecal ligation and puncture by altering p38, p44/42, and SAPK/JNK MAP kinase activation.
    Carter Y; Liu G; Yang J; Fier A; Mendez C
    Surg Infect (Larchmt); 2003; 4(1):17-27. PubMed ID: 12744763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induction of tolerance to hemorrhagic or endotoxic shock involves activation of NF-kappaB.
    Kramer AA; Salhab KF; Shafii AE; Norman J; Carey LC; Mendez C
    J Surg Res; 1999 May; 83(2):89-94. PubMed ID: 10329100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of tolerizing sublethal hemorrhage on p44/42 and SAPK/JNK Map-kinase activation.
    Carter Y; Liu G; Fier A; Mendez C
    Shock; 2002 Aug; 18(2):132-7. PubMed ID: 12166775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of the stress response in septic rats and LPS-stimulated alveolar macrophages: evidence for TNF-alpha posttranslational regulation.
    Ribeiro SP; Villar J; Downey GP; Edelson JD; Slutsky AS
    Am J Respir Crit Care Med; 1996 Dec; 154(6 Pt 1):1843-50. PubMed ID: 8970379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tolerance to shock: an exploration of mechanism.
    Mendez C; Kramer AA; Salhab KF; Valdes GA; Norman JG; Tracey KJ; Carey LC
    Ann Surg; 1999 Jun; 229(6):843-9; discussion 849-50. PubMed ID: 10363898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CCK-8 inhibits expression of TNF-alpha in the spleen of endotoxic shock rats and signal transduction mechanism of p38 MAPK.
    Meng AH; Ling YL; Zhang XP; Zhao XY; Zhang JL
    World J Gastroenterol; 2002 Feb; 8(1):139-43. PubMed ID: 11833090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular signaling in rat cultured vascular smooth muscle cells: roles of nuclear factor-kappaB and p38 mitogen-activated protein kinase on tumor necrosis factor-alpha production.
    Yamakawa T; Eguchi S; Matsumoto T; Yamakawa Y; Numaguchi K; Miyata I; Reynolds CM; Motley ED; Inagami T
    Endocrinology; 1999 Aug; 140(8):3562-72. PubMed ID: 10433212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A proteasome inhibitor confers cardioprotection.
    Lüss H; Schmitz W; Neumann J
    Cardiovasc Res; 2002 Apr; 54(1):140-51. PubMed ID: 12062370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox/ROS regulation of lipopolysaccharide-induced mitogen-activated protein kinase (MAPK) activation and MAPK-mediated TNF-alpha biosynthesis.
    Haddad JJ; Land SC
    Br J Pharmacol; 2002 Jan; 135(2):520-36. PubMed ID: 11815388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induction of heat shock proteins (HSPs) by sodium arsenite in cultured astrocytes and reduction of hydrogen peroxide-induced cell death.
    Fauconneau B; Petegnief V; Sanfeliu C; Piriou A; Planas AM
    J Neurochem; 2002 Dec; 83(6):1338-48. PubMed ID: 12472888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Escherichia coli LPS induces heat shock protein 25 in intestinal epithelial cells through MAP kinase activation.
    Kojima K; Musch MW; Ropeleski MJ; Boone DL; Ma A; Chang EB
    Am J Physiol Gastrointest Liver Physiol; 2004 Apr; 286(4):G645-52. PubMed ID: 14630641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The involvement of L-gamma-glutamyl-L-cysteinyl-glycine (glutathione/GSH) in the mechanism of redox signaling mediating MAPK(p38)-dependent regulation of pro-inflammatory cytokine production.
    Haddad JJ
    Biochem Pharmacol; 2002 Jan; 63(2):305-20. PubMed ID: 11841806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adherence regulates macrophage signal transduction and primes tumor necrosis factor production.
    Bauer GJ; Arbabi S; Garcia IA; de Hingh I; Rosengart MR; Maier RV
    Shock; 2000 Oct; 14(4):435-40. PubMed ID: 11049106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sodium salicylate inhibits macrophage TNF-alpha production and alters MAPK activation.
    Vittimberga FJ; McDade TP; Perugini RA; Callery MP
    J Surg Res; 1999 Jun; 84(2):143-9. PubMed ID: 10357911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lung, spleen, and kidney are the major places for inducible nitric oxide synthase expression in endotoxic shock: role of p38 mitogen-activated protein kinase in signal transduction of inducible nitric oxide synthase expression.
    Kan W; Zhao KS; Jiang Y; Yan W; Huang Q; Wang J; Qin Q; Huang X; Wang S
    Shock; 2004 Mar; 21(3):281-7. PubMed ID: 14770043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional and posttranscriptional roles for p38 mitogen-activated protein kinase in upregulation of TNF-alpha expression by deoxynivalenol (vomitoxin).
    Chung YJ; Zhou HR; Pestka JJ
    Toxicol Appl Pharmacol; 2003 Dec; 193(2):188-201. PubMed ID: 14644621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of p38 MAPK decreases myocardial TNF-alpha expression and improves myocardial function and survival in endotoxemia.
    Peng T; Lu X; Lei M; Moe GW; Feng Q
    Cardiovasc Res; 2003 Oct; 59(4):893-900. PubMed ID: 14553829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The inhibitory action of sodium arsenite on lipopolysaccharide-induced nitric oxide production in RAW 267.4 macrophage cells: a role of Raf-1 in lipopolysaccharide signaling.
    Chakravortty D; Kato Y; Sugiyama T; Koide N; Mu MM; Yoshida T; Yokochi T
    J Immunol; 2001 Feb; 166(3):2011-7. PubMed ID: 11160250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.