These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 12842871)

  • 1. Isozyme-nonselective N-substituted bipiperidylcarboxamide acetyl-CoA carboxylase inhibitors reduce tissue malonyl-CoA concentrations, inhibit fatty acid synthesis, and increase fatty acid oxidation in cultured cells and in experimental animals.
    Harwood HJ; Petras SF; Shelly LD; Zaccaro LM; Perry DA; Makowski MR; Hargrove DM; Martin KA; Tracey WR; Chapman JG; Magee WP; Dalvie DK; Soliman VF; Martin WH; Mularski CJ; Eisenbeis SA
    J Biol Chem; 2003 Sep; 278(39):37099-111. PubMed ID: 12842871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acetyl-CoA carboxylase inhibition for the treatment of metabolic syndrome.
    Harwood HJ
    Curr Opin Investig Drugs; 2004 Mar; 5(3):283-9. PubMed ID: 15083594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibitors of mammalian acetyl-CoA carboxylase.
    Corbett JW; Harwood JH
    Recent Pat Cardiovasc Drug Discov; 2007 Nov; 2(3):162-80. PubMed ID: 18221116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2.
    Abu-Elheiga L; Matzuk MM; Abo-Hashema KA; Wakil SJ
    Science; 2001 Mar; 291(5513):2613-6. PubMed ID: 11283375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acetyl-CoA carboxylase inhibition by ND-630 reduces hepatic steatosis, improves insulin sensitivity, and modulates dyslipidemia in rats.
    Harriman G; Greenwood J; Bhat S; Huang X; Wang R; Paul D; Tong L; Saha AK; Westlin WF; Kapeller R; Harwood HJ
    Proc Natl Acad Sci U S A; 2016 Mar; 113(13):E1796-805. PubMed ID: 26976583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Malonyl-CoA content and fatty acid oxidation in rat muscle and liver in vivo.
    Chien D; Dean D; Saha AK; Flatt JP; Ruderman NB
    Am J Physiol Endocrinol Metab; 2000 Aug; 279(2):E259-65. PubMed ID: 10913024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation.
    Tomas E; Tsao TS; Saha AK; Murrey HE; Zhang Cc Cc; Itani SI; Lodish HF; Ruderman NB
    Proc Natl Acad Sci U S A; 2002 Dec; 99(25):16309-13. PubMed ID: 12456889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and structure-activity relationships of N-{3-[2-(4-alkoxyphenoxy)thiazol-5-yl]-1- methylprop-2-ynyl}carboxy derivatives as selective acetyl-CoA carboxylase 2 inhibitors.
    Gu YG; Weitzberg M; Clark RF; Xu X; Li Q; Zhang T; Hansen TM; Liu G; Xin Z; Wang X; Wang R; McNally T; Zinker BA; Frevert EU; Camp HS; Beutel BA; Sham HL
    J Med Chem; 2006 Jun; 49(13):3770-3. PubMed ID: 16789734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovery of acetyl-coenzyme A carboxylase 2 inhibitors: comparison of a fluorescence intensity-based phosphate assay and a fluorescence polarization-based ADP Assay for high-throughput screening.
    Liu Y; Zalameda L; Kim KW; Wang M; McCarter JD
    Assay Drug Dev Technol; 2007 Apr; 5(2):225-35. PubMed ID: 17477831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Treating the metabolic syndrome: acetyl-CoA carboxylase inhibition.
    Harwood HJ
    Expert Opin Ther Targets; 2005 Apr; 9(2):267-81. PubMed ID: 15934915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hepatic de novo lipogenesis is present in liver-specific ACC1-deficient mice.
    Harada N; Oda Z; Hara Y; Fujinami K; Okawa M; Ohbuchi K; Yonemoto M; Ikeda Y; Ohwaki K; Aragane K; Tamai Y; Kusunoki J
    Mol Cell Biol; 2007 Mar; 27(5):1881-8. PubMed ID: 17210641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression, purification, and characterization of human and rat acetyl coenzyme A carboxylase (ACC) isozymes.
    Cheng D; Chu CH; Chen L; Feder JN; Mintier GA; Wu Y; Cook JW; Harpel MR; Locke GA; An Y; Tamura JK
    Protein Expr Purif; 2007 Jan; 51(1):11-21. PubMed ID: 16854592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Malonyl-CoA regulation in skeletal muscle: its link to cell citrate and the glucose-fatty acid cycle.
    Saha AK; Vavvas D; Kurowski TG; Apazidis A; Witters LA; Shafrir E; Ruderman NB
    Am J Physiol; 1997 Apr; 272(4 Pt 1):E641-8. PubMed ID: 9142886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leptin activates cardiac fatty acid oxidation independent of changes in the AMP-activated protein kinase-acetyl-CoA carboxylase-malonyl-CoA axis.
    Atkinson LL; Fischer MA; Lopaschuk GD
    J Biol Chem; 2002 Aug; 277(33):29424-30. PubMed ID: 12058043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LKB1 and the regulation of malonyl-CoA and fatty acid oxidation in muscle.
    Thomson DM; Brown JD; Fillmore N; Condon BM; Kim HJ; Barrow JR; Winder WW
    Am J Physiol Endocrinol Metab; 2007 Dec; 293(6):E1572-9. PubMed ID: 17925454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AMPK-independent pathways regulate skeletal muscle fatty acid oxidation.
    Dzamko N; Schertzer JD; Ryall JG; Steel R; Macaulay SL; Wee S; Chen ZP; Michell BJ; Oakhill JS; Watt MJ; Jørgensen SB; Lynch GS; Kemp BE; Steinberg GR
    J Physiol; 2008 Dec; 586(23):5819-31. PubMed ID: 18845612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acetyl-CoA carboxylase involvement in the rapid maturation of fatty acid oxidation in the newborn rabbit heart.
    Lopaschuk GD; Witters LA; Itoi T; Barr R; Barr A
    J Biol Chem; 1994 Oct; 269(41):25871-8. PubMed ID: 7929291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of acetyl-CoA carboxylase 2 enhances skeletal muscle fatty acid oxidation and improves whole-body glucose homeostasis in db/db mice.
    Glund S; Schoelch C; Thomas L; Niessen HG; Stiller D; Roth GJ; Neubauer H
    Diabetologia; 2012 Jul; 55(7):2044-53. PubMed ID: 22532389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversal of diet-induced hepatic steatosis and hepatic insulin resistance by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1 and 2.
    Savage DB; Choi CS; Samuel VT; Liu ZX; Zhang D; Wang A; Zhang XM; Cline GW; Yu XX; Geisler JG; Bhanot S; Monia BP; Shulman GI
    J Clin Invest; 2006 Mar; 116(3):817-24. PubMed ID: 16485039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective Acetyl-CoA Carboxylase 1 Inhibitor Improves Hepatic Steatosis and Hepatic Fibrosis in a Preclinical Nonalcoholic Steatohepatitis Model.
    Tamura YO; Sugama J; Iwasaki S; Sasaki M; Yasuno H; Aoyama K; Watanabe M; Erion DM; Yashiro H
    J Pharmacol Exp Ther; 2021 Nov; 379(3):280-289. PubMed ID: 34535562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.