BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

409 related articles for article (PubMed ID: 12843299)

  • 1. Cognitive strategies dependent on the hippocampus and caudate nucleus in human navigation: variability and change with practice.
    Iaria G; Petrides M; Dagher A; Pike B; Bohbot VD
    J Neurosci; 2003 Jul; 23(13):5945-52. PubMed ID: 12843299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decreased functional magnetic resonance imaging activity in the hippocampus in favor of the caudate nucleus in older adults tested in a virtual navigation task.
    Konishi K; Etchamendy N; Roy S; Marighetto A; Rajah N; Bohbot VD
    Hippocampus; 2013 Nov; 23(11):1005-14. PubMed ID: 23929534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Virtual water maze learning in human increases functional connectivity between posterior hippocampus and dorsal caudate.
    Woolley DG; Mantini D; Coxon JP; D'Hooge R; Swinnen SP; Wenderoth N
    Hum Brain Mapp; 2015 Apr; 36(4):1265-77. PubMed ID: 25418860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The brain-derived neurotrophic factor Val66Met polymorphism is associated with reduced functional magnetic resonance imaging activity in the hippocampus and increased use of caudate nucleus-dependent strategies in a human virtual navigation task.
    Banner H; Bhat V; Etchamendy N; Joober R; Bohbot VD
    Eur J Neurosci; 2011 Mar; 33(5):968-77. PubMed ID: 21255124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extrahippocampal contributions to age differences in human spatial navigation.
    Moffat SD; Kennedy KM; Rodrigue KM; Raz N
    Cereb Cortex; 2007 Jun; 17(6):1274-82. PubMed ID: 16857855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gray matter differences correlate with spontaneous strategies in a human virtual navigation task.
    Bohbot VD; Lerch J; Thorndycraft B; Iaria G; Zijdenbos AP
    J Neurosci; 2007 Sep; 27(38):10078-83. PubMed ID: 17881514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spontaneous navigational strategies and performance in the virtual town.
    Etchamendy N; Bohbot VD
    Hippocampus; 2007; 17(8):595-9. PubMed ID: 17546682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissociable contributions of the prefrontal cortex to hippocampus- and caudate nucleus-dependent virtual navigation strategies.
    Dahmani L; Bohbot VD
    Neurobiol Learn Mem; 2015 Jan; 117():42-50. PubMed ID: 25038426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hippocampal function and spatial memory: evidence from functional neuroimaging in healthy participants and performance of patients with medial temporal lobe resections.
    Bohbot VD; Iaria G; Petrides M
    Neuropsychology; 2004 Jul; 18(3):418-25. PubMed ID: 15291720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective deficit in spatial memory strategies contrast to intact response strategies in patients with schizophrenia spectrum disorders tested in a virtual navigation task.
    Wilkins LK; Girard TA; Konishi K; King M; Herdman KA; King J; Christensen B; Bohbot VD
    Hippocampus; 2013 Nov; 23(11):1015-24. PubMed ID: 23939937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brain activation during human navigation: gender-different neural networks as substrate of performance.
    Grön G; Wunderlich AP; Spitzer M; Tomczak R; Riepe MW
    Nat Neurosci; 2000 Apr; 3(4):404-8. PubMed ID: 10725932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Knowing where and getting there: a human navigation network.
    Maguire EA; Burgess N; Donnett JG; Frackowiak RS; Frith CD; O'Keefe J
    Science; 1998 May; 280(5365):921-4. PubMed ID: 9572740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human aging alters the neural computation and representation of space.
    Schuck NW; Doeller CF; Polk TA; Lindenberger U; Li SC
    Neuroimage; 2015 Aug; 117():141-50. PubMed ID: 26003855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retrosplenial and hippocampal brain regions in human navigation: complementary functional contributions to the formation and use of cognitive maps.
    Iaria G; Chen JK; Guariglia C; Ptito A; Petrides M
    Eur J Neurosci; 2007 Feb; 25(3):890-9. PubMed ID: 17298595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human navigation that requires calculating heading vectors recruits parietal cortex in a virtual and visually sparse water maze task in fMRI.
    Rodriguez PF
    Behav Neurosci; 2010 Aug; 124(4):532-40. PubMed ID: 20695652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The human parahippocampal cortex subserves egocentric spatial learning during navigation in a virtual maze.
    Weniger G; Siemerkus J; Schmidt-Samoa C; Mehlitz M; Baudewig J; Dechent P; Irle E
    Neurobiol Learn Mem; 2010 Jan; 93(1):46-55. PubMed ID: 19683063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A preliminary study of sex differences in brain activation during a spatial navigation task in healthy adults.
    Sneider JT; Sava S; Rogowska J; Yurgelun-Todd DA
    Percept Mot Skills; 2011 Oct; 113(2):461-80. PubMed ID: 22185061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Landmark sequencing and route knowledge: an fMRI study.
    Nemmi F; Piras F; Péran P; Incoccia C; Sabatini U; Guariglia C
    Cortex; 2013 Feb; 49(2):507-19. PubMed ID: 22225882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hippocampal activation and memory performance in schizophrenia depend on strategy use in a virtual maze.
    Wilkins LK; Girard TA; Herdman KA; Christensen BK; King J; Kiang M; Bohbot VD
    Psychiatry Res Neuroimaging; 2017 Oct; 268():1-8. PubMed ID: 28780430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impairments in the acquisition, retention and selection of spatial navigation strategies after medial caudate-putamen lesions in rats.
    Whishaw IQ; Mittleman G; Bunch ST; Dunnett SB
    Behav Brain Res; 1987 May; 24(2):125-38. PubMed ID: 3593524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.