BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 12843391)

  • 1. Increase in the export of alkalinity from North America's largest river.
    Raymond PA; Cole JJ
    Science; 2003 Jul; 301(5629):88-91. PubMed ID: 12843391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Geochemistry. A new story from the Ol' Man River.
    Ittekkot V
    Science; 2003 Jul; 301(5629):56-8. PubMed ID: 12843381
    [No Abstract]   [Full Text] [Related]  

  • 3. Anthropogenically enhanced fluxes of water and carbon from the Mississippi River.
    Raymond PA; Oh NH; Turner RE; Broussard W
    Nature; 2008 Jan; 451(7177):449-52. PubMed ID: 18216851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of different land use on soil erosion in the pre-alpine fringe (North-East Italy): Ion budget and sediment yield.
    Bini C; Gemignani S; Zilocchi L
    Sci Total Environ; 2006 Oct; 369(1-3):433-40. PubMed ID: 16839595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of cation concentrations in stream waters by surface soil processes in an Amazonian watershed.
    Markewitz D; Davidson EA; Figueiredo Rd ; Victoria RL; Krusche AV
    Nature; 2001 Apr; 410(6830):802-5. PubMed ID: 11298445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alkalinity export and carbon balance.
    Lackner KS
    Science; 2003 Nov; 302(5647):985; author reply 985. PubMed ID: 14605348
    [No Abstract]   [Full Text] [Related]  

  • 7. Soil carbon sequestration impacts on global climate change and food security.
    Lal R
    Science; 2004 Jun; 304(5677):1623-7. PubMed ID: 15192216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased alkalinity in the Mississippi.
    Jones JB; Stanley EH; Mulholland PJ
    Science; 2003 Nov; 302(5647):985-7; author reply 985-7. PubMed ID: 14605349
    [No Abstract]   [Full Text] [Related]  

  • 9. Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels.
    Freeman C; Fenner N; Ostle NJ; Kang H; Dowrick DJ; Reynolds B; Lock MA; Sleep D; Hughes S; Hudson J
    Nature; 2004 Jul; 430(6996):195-8. PubMed ID: 15241411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2.
    Richey JE; Melack JM; Aufdenkampe AK; Ballester VM; Hess LL
    Nature; 2002 Apr; 416(6881):617-20. PubMed ID: 11948346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of forest trees and their mycorrhizal fungi in carbonate rock weathering and its significance for global carbon cycling.
    Thorley RM; Taylor LL; Banwart SA; Leake JR; Beerling DJ
    Plant Cell Environ; 2015 Sep; 38(9):1947-61. PubMed ID: 25211602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydro-Geochemistry of the River Water in the Jiulongjiang River Basin, Southeast China: Implications of Anthropogenic Inputs and Chemical Weathering.
    Li X; Han G; Liu M; Yang K; Liu J
    Int J Environ Res Public Health; 2019 Feb; 16(3):. PubMed ID: 30717400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Passive sequestration of atmospheric CO2 through coupled plant-mineral reactions in urban soils.
    Manning DA; Renforth P
    Environ Sci Technol; 2013 Jan; 47(1):135-41. PubMed ID: 22616942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rising atmospheric CO2 reduces sequestration of root-derived soil carbon.
    Heath J; Ayres E; Possell M; Bardgett RD; Black HI; Grant H; Ineson P; Kerstiens G
    Science; 2005 Sep; 309(5741):1711-3. PubMed ID: 16151007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical weathering and CO₂ consumption in the Lower Mekong River.
    Li S; Lu XX; Bush RT
    Sci Total Environ; 2014 Feb; 472():162-77. PubMed ID: 24291559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of carbonate synthesis in acidic oceans on early Mars.
    Fairén AG; Fernández-Remolar D; Dohm JM; Baker VR; Amils R
    Nature; 2004 Sep; 431(7007):423-6. PubMed ID: 15386004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Climate-change impacts on hydrology and nutrients in a Danish lowland river basin.
    Andersen HE; Kronvang B; Larsen SE; Hoffmann CC; Jensen TS; Rasmussen EK
    Sci Total Environ; 2006 Jul; 365(1-3):223-37. PubMed ID: 16647104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Major ion chemistry and dissolved inorganic carbon cycling in a human-disturbed mountainous river (the Luodingjiang River) of the Zhujiang (Pearl River), China.
    Zhang S; Lu XX; Sun H; Han J; Higgitt DL
    Sci Total Environ; 2009 Apr; 407(8):2796-807. PubMed ID: 19185905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Climate change. Carbonate mysteries.
    Elderfield H
    Science; 2002 May; 296(5573):1618-21. PubMed ID: 12040166
    [No Abstract]   [Full Text] [Related]  

  • 20. Impact of sulfuric and nitric acids on carbonate dissolution, and the associated deficit of CO
    Huang QB; Qin XQ; Liu PY; Zhang LK; Su CT
    J Contam Hydrol; 2017 Aug; 203():18-27. PubMed ID: 28619599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.