BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 12844270)

  • 1. Molecular determinants for amyloid fibril formation: lessons from lung surfactant protein C.
    Johansson J
    Swiss Med Wkly; 2003 May; 133(19-20):275-82. PubMed ID: 12844270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of amyloid fibril-forming proteins.
    Kallberg Y; Gustafsson M; Persson B; Thyberg J; Johansson J
    J Biol Chem; 2001 Apr; 276(16):12945-50. PubMed ID: 11134035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane properties and amyloid fibril formation of lung surfactant protein C.
    Johansson J
    Biochem Soc Trans; 2001 Aug; 29(Pt 4):601-6. PubMed ID: 11498036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteolytic generation and aggregation of peptides from transmembrane regions: lung surfactant protein C and amyloid beta-peptide.
    Johansson J; Weaver TE; Tjernberg LO
    Cell Mol Life Sci; 2004 Feb; 61(3):326-35. PubMed ID: 14770296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular structures of amyloid and prion fibrils: consensus versus controversy.
    Tycko R; Wickner RB
    Acc Chem Res; 2013 Jul; 46(7):1487-96. PubMed ID: 23294335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The palmitoyl groups of lung surfactant protein C reduce unfolding into a fibrillogenic intermediate.
    Gustafsson M; Griffiths WJ; Furusjö E; Johansson J
    J Mol Biol; 2001 Jul; 310(4):937-50. PubMed ID: 11453699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deacylated pulmonary surfactant protein SP-C transforms from alpha-helical to amyloid fibril structure via a pH-dependent mechanism: an infrared structural investigation.
    Dluhy RA; Shanmukh S; Leapard JB; Krüger P; Baatz JE
    Biophys J; 2003 Oct; 85(4):2417-29. PubMed ID: 14507705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Charge attraction and beta propensity are necessary for amyloid fibril formation from tetrapeptides.
    Tjernberg L; Hosia W; Bark N; Thyberg J; Johansson J
    J Biol Chem; 2002 Nov; 277(45):43243-6. PubMed ID: 12215440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and intermolecular dynamics of aggregates populated during amyloid fibril formation studied by hydrogen/deuterium exchange.
    Carulla N; Zhou M; Giralt E; Robinson CV; Dobson CM
    Acc Chem Res; 2010 Aug; 43(8):1072-9. PubMed ID: 20557067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X-ray diffraction and far-UV CD studies of filaments formed by a leucine-rich repeat peptide: structural similarity to the amyloid fibrils of prions and Alzheimer's disease beta-protein.
    Symmons MF; Buchanan SG; Clarke DT; Jones G; Gay NJ
    FEBS Lett; 1997 Jul; 412(2):397-403. PubMed ID: 9256259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyproline chains destabilize the Alzheimer's amyloid-β protofibrils: A molecular dynamics simulation study.
    Kanchi PK; Dasmahapatra AK
    J Mol Graph Model; 2019 Dec; 93():107456. PubMed ID: 31581064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics of surfactant protein C: from single molecule to heptameric aggregates.
    Ramírez E; Santana A; Cruz A; Plasencia I; López GE
    Biophys J; 2006 Apr; 90(8):2698-705. PubMed ID: 16443648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational polymorphism of the amyloidogenic peptide homologous to residues 113-127 of the prion protein.
    Satheeshkumar KS; Jayakumar R
    Biophys J; 2003 Jul; 85(1):473-83. PubMed ID: 12829502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beta-sheet core of human prion protein amyloid fibrils as determined by hydrogen/deuterium exchange.
    Lu X; Wintrode PL; Surewicz WK
    Proc Natl Acad Sci U S A; 2007 Jan; 104(5):1510-5. PubMed ID: 17242357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prolines and amyloidogenicity in fragments of the Alzheimer's peptide beta/A4.
    Wood SJ; Wetzel R; Martin JD; Hurle MR
    Biochemistry; 1995 Jan; 34(3):724-30. PubMed ID: 7827029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-specific identification of non-beta-strand conformations in Alzheimer's beta-amyloid fibrils by solid-state NMR.
    Antzutkin ON; Balbach JJ; Tycko R
    Biophys J; 2003 May; 84(5):3326-35. PubMed ID: 12719262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supramolecular structural constraints on Alzheimer's beta-amyloid fibrils from electron microscopy and solid-state nuclear magnetic resonance.
    Antzutkin ON; Leapman RD; Balbach JJ; Tycko R
    Biochemistry; 2002 Dec; 41(51):15436-50. PubMed ID: 12484785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amyloid fibril formation by A beta 16-22, a seven-residue fragment of the Alzheimer's beta-amyloid peptide, and structural characterization by solid state NMR.
    Balbach JJ; Ishii Y; Antzutkin ON; Leapman RD; Rizzo NW; Dyda F; Reed J; Tycko R
    Biochemistry; 2000 Nov; 39(45):13748-59. PubMed ID: 11076514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterologous amyloid seeding: revisiting the role of acetylcholinesterase in Alzheimer's disease.
    Jean L; Thomas B; Tahiri-Alaoui A; Shaw M; Vaux DJ
    PLoS One; 2007 Jul; 2(7):e652. PubMed ID: 17653279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amino acid sequence determinants and molecular chaperones in amyloid fibril formation.
    Nerelius C; Fitzen M; Johansson J
    Biochem Biophys Res Commun; 2010 May; 396(1):2-6. PubMed ID: 20494101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.