BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 12844270)

  • 21. Assembling amyloid fibrils from designed structures containing a significant amyloid beta-peptide fragment.
    Tjernberg LO; Tjernberg A; Bark N; Shi Y; Ruzsicska BP; Bu Z; Thyberg J; Callaway DJ
    Biochem J; 2002 Aug; 366(Pt 1):343-51. PubMed ID: 12023906
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Amyloid-forming peptides from beta2-microglobulin-Insights into the mechanism of fibril formation in vitro.
    Jones S; Manning J; Kad NM; Radford SE
    J Mol Biol; 2003 Jan; 325(2):249-57. PubMed ID: 12488093
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Elucidating the Structures of Amyloid Oligomers with Macrocyclic β-Hairpin Peptides: Insights into Alzheimer's Disease and Other Amyloid Diseases.
    Kreutzer AG; Nowick JS
    Acc Chem Res; 2018 Mar; 51(3):706-718. PubMed ID: 29508987
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Two-rung model of a left-handed beta-helix for prions explains species barrier and strain variation in transmissible spongiform encephalopathies.
    Langedijk JP; Fuentes G; Boshuizen R; Bonvin AM
    J Mol Biol; 2006 Jul; 360(4):907-20. PubMed ID: 16782127
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Alzheimer's amyloid fibrils: structure and assembly.
    Serpell LC
    Biochim Biophys Acta; 2000 Jul; 1502(1):16-30. PubMed ID: 10899428
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In silico and in vitro studies to elucidate the role of Cu2+ and galanthamine as the limiting step in the amyloid beta (1-42) fibrillation process.
    Hernández-Rodríguez M; Correa-Basurto J; Benitez-Cardoza CG; Resendiz-Albor AA; Rosales-Hernández MC
    Protein Sci; 2013 Oct; 22(10):1320-35. PubMed ID: 23904252
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synchrotron X-ray studies suggest that the core of the transthyretin amyloid fibril is a continuous beta-sheet helix.
    Blake C; Serpell L
    Structure; 1996 Aug; 4(8):989-98. PubMed ID: 8805583
    [TBL] [Abstract][Full Text] [Related]  

  • 28. How do membranes initiate Alzheimer's Disease? Formation of toxic amyloid fibrils by the amyloid β-protein on ganglioside clusters.
    Matsuzaki K
    Acc Chem Res; 2014 Aug; 47(8):2397-404. PubMed ID: 25029558
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Solution conformations and aggregational properties of synthetic amyloid beta-peptides of Alzheimer's disease. Analysis of circular dichroism spectra.
    Barrow CJ; Yasuda A; Kenny PT; Zagorski MG
    J Mol Biol; 1992 Jun; 225(4):1075-93. PubMed ID: 1613791
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Self-Replication of Prion Protein Fragment 89-230 Amyloid Fibrils Accelerated by Prion Protein Fragment 107-143 Aggregates.
    Sneideris T; Ziaunys M; Chu BK; Chen RP; Smirnovas V
    Int J Mol Sci; 2020 Oct; 21(19):. PubMed ID: 33049945
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Brichos domain-containing C-terminal part of pro-surfactant protein C binds to an unfolded poly-val transmembrane segment.
    Johansson H; Nordling K; Weaver TE; Johansson J
    J Biol Chem; 2006 Jul; 281(30):21032-21039. PubMed ID: 16709565
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular modeling of the amyloid-beta-peptide using the homology to a fragment of triosephosphate isomerase that forms amyloid in vitro.
    Contreras CF; Canales MA; Alvarez A; De Ferrari GV; Inestrosa NC
    Protein Eng; 1999 Nov; 12(11):959-66. PubMed ID: 10585501
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stabilization of discordant helices in amyloid fibril-forming proteins.
    Päiviö A; Nordling E; Kallberg Y; Thyberg J; Johansson J
    Protein Sci; 2004 May; 13(5):1251-9. PubMed ID: 15096631
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A molecular model of Alzheimer amyloid beta-peptide fibril formation.
    Tjernberg LO; Callaway DJ; Tjernberg A; Hahne S; Lilliehöök C; Terenius L; Thyberg J; Nordstedt C
    J Biol Chem; 1999 Apr; 274(18):12619-25. PubMed ID: 10212241
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimum amyloid fibril formation of a peptide fragment suggests the amyloidogenic preference of beta2-microglobulin under physiological conditions.
    Ohhashi Y; Hasegawa K; Naiki H; Goto Y
    J Biol Chem; 2004 Mar; 279(11):10814-21. PubMed ID: 14699107
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dissection of conformational conversion events during prion amyloid fibril formation using hydrogen exchange and mass spectrometry.
    Singh J; Udgaonkar JB
    J Mol Biol; 2013 Sep; 425(18):3510-21. PubMed ID: 23811055
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Left-handed polyproline-II helix revisited: proteins causing proteopathies.
    Adzhubei AA; Anashkina AA; Makarov AA
    J Biomol Struct Dyn; 2017 Sep; 35(12):2701-2713. PubMed ID: 27562438
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protein denaturation and aggregation: Cellular responses to denatured and aggregated proteins.
    Meredith SC
    Ann N Y Acad Sci; 2005 Dec; 1066():181-221. PubMed ID: 16533927
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rationally designed mutations convert de novo amyloid-like fibrils into monomeric beta-sheet proteins.
    Wang W; Hecht MH
    Proc Natl Acad Sci U S A; 2002 Mar; 99(5):2760-5. PubMed ID: 11880628
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The BRICHOS domain, amyloid fibril formation, and their relationship.
    Knight SD; Presto J; Linse S; Johansson J
    Biochemistry; 2013 Oct; 52(43):7523-31. PubMed ID: 24099305
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.