BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 12844533)

  • 61. Fibrillar inclusions and motor neuron degeneration in transgenic mice expressing superoxide dismutase 1 with a disrupted copper-binding site.
    Wang J; Xu G; Gonzales V; Coonfield M; Fromholt D; Copeland NG; Jenkins NA; Borchelt DR
    Neurobiol Dis; 2002 Jul; 10(2):128-38. PubMed ID: 12127151
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Neurofilaments and orthograde transport are reduced in ventral root axons of transgenic mice that express human SOD1 with a G93A mutation.
    Zhang B; Tu P; Abtahian F; Trojanowski JQ; Lee VM
    J Cell Biol; 1997 Dec; 139(5):1307-15. PubMed ID: 9382875
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Novel insights into SMALED2: BICD2 mutations increase microtubule stability and cause defects in axonal and NMJ development.
    Martinez Carrera LA; Gabriel E; Donohoe CD; Hölker I; Mariappan A; Storbeck M; Uhlirova M; Gopalakrishnan J; Wirth B
    Hum Mol Genet; 2018 May; 27(10):1772-1784. PubMed ID: 29528393
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Human-induced pluripotent stem cells pave the road for a better understanding of motor neuron disease.
    Winner B; Marchetto MC; Winkler J; Gage FH
    Hum Mol Genet; 2014 Sep; 23(R1):R27-34. PubMed ID: 24821704
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Cell therapy and stem cells in animal models of motor neuron disorders.
    Hedlund E; Hefferan MP; Marsala M; Isacson O
    Eur J Neurosci; 2007 Oct; 26(7):1721-37. PubMed ID: 17897390
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Spinal and bulbar muscular atrophy: androgen receptor dysfunction caused by a trinucleotide repeat expansion.
    MacLean HE; Warne GL; Zajac JD
    J Neurol Sci; 1996 Feb; 135(2):149-57. PubMed ID: 8867071
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Abnormal mitochondrial transport and morphology as early pathological changes in human models of spinal muscular atrophy.
    Xu CC; Denton KR; Wang ZB; Zhang X; Li XJ
    Dis Model Mech; 2016 Jan; 9(1):39-49. PubMed ID: 26586529
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Neurogenic and myogenic contributions to hereditary motor neuron disease.
    Bricceno KV; Fischbeck KH; Burnett BG
    Neurodegener Dis; 2012; 9(4):199-209. PubMed ID: 22327341
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Disorders of the motor neurone.
    Morrison KE; Harding AE
    Baillieres Clin Neurol; 1994 Aug; 3(2):431-45. PubMed ID: 7952856
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Involvement of neurofilaments in motor neuron disease.
    Xu Z; Cork LC; Griffin JW; Cleveland DW
    J Cell Sci Suppl; 1993; 17():101-8. PubMed ID: 8144684
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Novel dynein DYNC1H1 neck and motor domain mutations link distal spinal muscular atrophy and abnormal cortical development.
    Fiorillo C; Moro F; Yi J; Weil S; Brisca G; Astrea G; Severino M; Romano A; Battini R; Rossi A; Minetti C; Bruno C; Santorelli FM; Vallee R
    Hum Mutat; 2014 Mar; 35(3):298-302. PubMed ID: 24307404
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Cytoplasmic dynein could be key to understanding neurodegeneration.
    Banks GT; Fisher EM
    Genome Biol; 2008; 9(3):214. PubMed ID: 18373888
    [TBL] [Abstract][Full Text] [Related]  

  • 73. RNA processing defects associated with diseases of the motor neuron.
    Kolb SJ; Sutton S; Schoenberg DR
    Muscle Nerve; 2010 Jan; 41(1):5-17. PubMed ID: 19697368
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Defective axonal transport in motor neuron disease.
    El-Kadi AM; Soura V; Hafezparast M
    J Neurosci Res; 2007 Sep; 85(12):2557-66. PubMed ID: 17265455
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Distinct Muscle Biopsy Findings in Genetically Defined Adult-Onset Motor Neuron Disorders.
    Jokela M; Huovinen S; Raheem O; Lindfors M; Palmio J; Penttilä S; Udd B
    PLoS One; 2016; 11(3):e0151376. PubMed ID: 26999347
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Molecular basis for dyneinopathies reveals insight into dynein regulation and dysfunction.
    Marzo MG; Griswold JM; Ruff KM; Buchmeier RE; Fees CP; Markus SM
    Elife; 2019 Jul; 8():. PubMed ID: 31364990
    [TBL] [Abstract][Full Text] [Related]  

  • 77. New mechanism for inclusion formation in neurodegeneration.
    Bradbury J
    Lancet Neurol; 2005 Aug; 4(8):459. PubMed ID: 16086493
    [No Abstract]   [Full Text] [Related]  

  • 78. Genetics of motor neuron disorders: new insights into pathogenic mechanisms.
    Dion PA; Daoud H; Rouleau GA
    Nat Rev Genet; 2009 Nov; 10(11):769-82. PubMed ID: 19823194
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Stem cell transplantation for motor neuron disease: current approaches and future perspectives.
    Gowing G; Svendsen CN
    Neurotherapeutics; 2011 Oct; 8(4):591-606. PubMed ID: 21904789
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Neuromuscular junction defects in mice with mutation of dynein heavy chain 1.
    Courchesne SL; Pazyra-Murphy MF; Lee DJ; Segal RA
    PLoS One; 2011 Feb; 6(2):e16753. PubMed ID: 21346813
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.